Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Optical micro-structuring of metal films on the surface of dielectric materials: prospects of shaping by non-diffracting optical beams

Abstract

The technique of optical micro-structuring of metal films based on processes of metal atoms adsorption on the surface of crystalline substrate and simultaneous controllable photo-stimulated desorption of atoms by non-uniform laser beam illumination is presented. The experiments were performed for sodium atom deposition on a sapphire substrate. The sapphire substrate was illuminated through a commercial linear mire with a pitch of 10 µm by a 440 nm laser beam with 1W/cm2 intensity. This provides the nonuniform spatial distribution of the illumination intensity over the sapphire surface and optical control of sodium atom deposition on the sapphire substrate, preventing the nucleation and growth of the granular film in the illuminated areas. Experiments showed that the mire pattern was well reproduced in the sodium deposits, thus creating the microstructured metallic film with few tens nm thickness. The novel suggestion to use nondiffracting optical beams for high contrast microstructuring of surface metal film is presented.

About the Authors

R. Drampyan
Institute for Physical Research, National Academy of Sciences of Armenia; Armenian - Russian (Slavonic) University
Armenia

0203, Ashtarak-2

Emin str. 123, 0051, Yerevan



T. Vartanyan
National Research University of Information Technologies, Mechanics and Optics
Russian Federation

St. Petersburg



References

1. S.Y.Lin, J.G.Flemming, D.C. Hetherington et al. Nature, 394, P. 251 (1998).

2. Y.W.Su, C.S.Wu, C.C.Chen, C.D.Chen. Advanced Materials, 15 P. 49 (2003).

3. N.P. Jonson, R.M. De La Rue, S.A.De La Rue, “Metamaterials at Optical Frequencies: Fabrication and Measurements” in Applications of Metamaterials, CRC Press. Ed. F. Capolino, Chapter 30 (2009).

4. S.Linden, “Fabrication and Optical Characterization of Photonic Metamaterials” in Applications of Metamaterials, CRC Press. Ed. F. Capolino, Chapter 29 (2009).

5. Richard De La Rue et al, “Planar nanophotonic devices in integration technologies” in Photonics and Micro- and Nano-structured materials, Ed. Rafael Drampyan, Proc. of SPIE, Vol. 8414, P. 841402 (2012).

6. A. Arsenault, et al, J. Mater. Chem. 14, P. 781 (2004).

7. X.Wang et al. Adv. Mater., 17, P. 2103 (2005).

8. A.M. Bonch-Bruevich, T.A. Vartanyan, A.V.Gorlanov, Yu.N. Maksimov, S.G. Przhibrlskii, V.V.Khromov. Photodesorption of sodium from the surface of sapphire. Sov. Phys. JETP, 70, P. 604– 608 (1990).

9. T.A.Vartanyan et al. “Photoexitation and photoregistration of atomic motion on the surfaces of solid materials”, in New Trends in Quantum Coherence and Nonlinear Optics”, Editor, R.Drampyan, Nova Science Publishers, NY, P. 245–263 (2009).

10. T.A.Vartanyan, V.V. Khromov, N.B. Leonov, S.G. Przhibelskii, “Shaping of surface nanostructures via non-termal light-induced process”, in Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010, Edited by P.Veiko , T.A. Vartanyan, Proc. SPIE, Vol.7996, P. 7996OH 1-7 (2011).

11. T.A. Vartanyan et al, “Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means”, in Photonics and Micro- and Nano-structured Materials 2011, Edited by Rafael Drampyan, Proc. SPIE, Vol. 8414, P. 841404 1-7 (2012).

12. C. Marinelly, A.Burchianti, A.Bogi, F. Della Valle, G.Bevilacqua, E.Mariotti, S.Veronesi, L.Moi. Desorption of Rb and Cs from PDMS induced by nonresonant light scattering, Eur. Phys. D, 37, P. 319–325 (2006).

13. A.E.Afanasyev, P.N. Melentyev, V.I. Balykin. Quantum adsorbtion of atoms on the surface induced by laser light, Pis’ma Zh. Eks.Teor Fiz., 86, P. 198–203 (2007).

14. I.N.Abramova, E.B.Aleksandrov, A.M.Bonch-Bruevich, V.V.Khromov. Photostimulated desorption of metal atoms from surface of transparent insulator, JETP Letters, 39, P. 203–205 (1984).

15. A.N.Latishev, O.V.Ovchinnikov, S.S. Okhotnikov. J.Appl.Spectr., 70, P. 817–820 (2003).

16. J.-M. Antonietti, M.Michalski, U.Heiz, H.Jones, K.H.Lim, N. Roesch, A.D.Vitto, G. Pacchioni, Phys. Rev Lett., 94, P. 213402 (2005).

17. T.A. Vartanyan, V.V.Khromov, N.B.Leonov, S.G. Przhibelskii. Optical methods for formation of metallic nanostructures on the surface of dielectric materials, Opticheskii Zhournal, 78(8), P. 47–50 (2011).

18. J. Durnin, J.J. Mikely Jr, J.H. Eberly. Diffraction-free beams. Phys. Rev. Lett., 58, P. 1499–1501 (1987).

19. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, G. Spagnolo. Generalized Bessel-Gauss beams, J. Mod. Optics, 43, P. 1155–1166 (1996).

20. A.J. Cox and D.C. Dibble. Nondiffracting beams from a spatially filtered Fabry–Perot resonator, J. Opt. Soc. Am. A, 9 P. 282–286 (1992).

21. N. Chattrapiban, E.A. Rogers, D. Cofield, W.T. Hill, III, and R. Roy. Generation of nondiffracting Bessel beams by use of a spatial light modulator. Opt. Lett., 28, P. 2183–2185 (2003).

22. J. Turunen, A. Vasara, and A. T. Friberg. Holographic generation of diffraction-free beams. Appl. Opt., 27 P. 3959–3962 (1988).

23. R.Drampyan. Formation of diffraction-free beams by laser generation of conical emission in a Kerr medium. Appl. Phys.B, 68, P. 77–79 (1999).

24. Shafer F. P. On some properties of axicons. Appl. Phys. B, 39, P. 1-8 (1986).

25. J. Arlt, V. Garces-Chavez, W. Sibett, K.Dholakia. Optical micromanipulation using a Bessel light beam. Opt Commun., 197, P. 239 (2001).

26. A. Badalyan, R. Hovsepyan, P. Mantashyan, V. Mekhitaryan, R. Drampyan. Bessel standing wave technique for optical induction of complex refractive lattice structures in photorefractive materials. J. Modern Optics, 60, P. 617–628 (2013).

27. P.Rose, F. Diebel, M. Boguslawski, C. Denz. Airy beam induced optical routing. arXiv:1202.5724.v1 [physics. optics] 26 Feb 2012.

28. J. Arlt, K. Dholakia. Generation of high-order Bessel beams by use of an axicon. Optics Commun., 177, P. 297–301 (2000).

29. P. Rose, M. Boguslawski, C. Denz. Nonlinear lattice structures based on families of complex nondiffracting beams. New J. Phys., 14, P. 033018. (2012).

30. D. M. Schaadt, A. B. Feng, and E. T. Yub. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett., 86, P. 063106 (2005).

31. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett., 93, P. 091107 (2008).

32. Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Ho. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography. Nanotechnology, 16, P. 1874–1877 (2005).

33. Paul L. Stiles, Jon A. Dieringer, Nilam C. Shah, Richard P. Van Duyne. Surface-enhanced Raman spectroscopy. Annual Review of Analytical Chemistry, 1, P. 601–626 (2008).

34. M. Ishifuji, M. Mitsuishi, T. Miyashita. Bottom-up design of hybrid polymer nanoassemblies elucidated plasmon-enhanced second harmonic generation from nonlinear optical dyes. J.Am.Chem, Soc., 131, P. 4418–4424 (2009).

35. Yu. Zhang, N. K. Grady, C. Ayala-Orozco, N. K. Halas. Three-dimensional nanostructures as high efficient generator of second harmonic light. Nano Lett., 11, P. 5519–5523 (2011).

36. J. Fuitowski et al. Mapping of gold nanostructure-enhanced near fields via laser scanning second harmonic generation and ablation. Journal of Nanophotonics, 6, P. 063515 (2012).

37. M.Centini, A.Benedetti. Second harmonic generation in plasmonic nanoresonators. Journal of Nanophotonics, 7, P. 078501 (2013).


Review

For citations:


Drampyan R., Vartanyan T. Optical micro-structuring of metal films on the surface of dielectric materials: prospects of shaping by non-diffracting optical beams. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(5):650-658.

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)