Regularities of light diffusion in the composite material pentaerythriol tetranirate - nickel
Abstract
The solution of the radiative transfer equation in the layer of a diffusing medium with Frenel fronts was observed by the example of light transfer in a dielectric medium containing nickel nanoparticles. The method of spherical harmonics was used. A scattering indicatrix was calculated for 532 nm light for 140 nm nickel nanoparticles in a pentaerythriol tetranitrate matrix. The angular distribution of illumination on the sample’s fronts was calculated for reflected and transmitted light. The maximum of the scattering indicatrix is observed for the diffusion in the opposite direction. The minimum of the illumination on the front in direction of the sample’s bulk is a result of using the Frenel’s boundary conditions and the asymmetric property of the scattering indicatrix of the nickel nanoparticles. The possibility of using of the composites explosives – nickel nanoparticles as a cap of the optical detonator is considered.
About the Authors
A. A. ZvekovRussian Federation
Kemerovo
M. V. Ananyeva
Russian Federation
Kemerovo
A. V. Kalenskii
Russian Federation
Kemerovo
A. P. Nikitin
Russian Federation
Kemerovo
References
1. Moulin E., Sukmanowski J., et al. Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles. Journal of Non-Crystalline Solids, 354, P. 2488–2491 (2008).
2. Kochikov I.V., Morozov A.N., Fufurin I.L. Numerical procedures for substances identification and concentration calculation in the open atmosphere by processing a single FTIR measurement. Computer Optics, 36 (4), P. 554–561 (2012).
3. Lisenko S.A., Kugeiko M.M., Firago V.A., Sobchuk A.N. Noninvasive express analysis of hemoglobin derivates in blood by reflectance spectroscopy. Journal of Applied Spectroscopy, 81 (1), P. 120–128 (2014).
4. Rey J.M., Kottman J., Sirgist M.W. Photothermal diffuse reflectance: a new tool for spectroscopic investigation in scattering solids. Applied Physics B, 112 (4), P. 547–551 (2013).
5. Kriger V.G., Kalenskii A.V., et al. Heat transfer processes during laser heating included in an inert matrix. Teplofizika and aeromekhanika, 20 (3), P. 375–382 (2013).
6. Chumakov Yu.A., Knyazeva A.G. Initiation of reaction in the vicinity of a single particle heated by microwave radiation. Fizika goreniya i vzryva, 48 (2), P. 24–30 (2012).
7. Ananyeva M.V., Zvekov A.A., et al. Promising compounds for the cap of optical detonator. Perspektivnye materialy, 7, P. 5–12 (2014).
8. Aduev B.P., Nurmukhametov D.R., et al. Integrating Sphere Study of the Optical Properties of Aluminum Nanoparticles in Tetranitropentaerytrite. Zhurnal Tekhnicheskoi Fiziki, 84 (9), P. 126–131 (2014).
9. Sandoval C., Kim A.D. Deriving Kubelka-Munk theory from radiative transport. Journal of Optical Society of America A, 31 (3), P. 628–636 (2014).
10. Hayakawa C.K., Spanier J., Venugopalan V. Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media. Journal of Optical Society of America A, 31 (2), P. 301–311 (2014).
11. Kriger V.G., Kalenskii A.V., et al. Influence the efficiency of absorption of the laser radiation on the temperature of the heating inclusion in transparent glass. Fizika goreniya i vzryva, 48 (6), P. 54–58 (2012).
12. Zykov I.Y. Accounting of the absorbance of nano-inclusions heated by laser impulse. Mezhdunarodnoe nauchnoe izdanie ‘Sovremennyie fundamentalnyie i prikladnyie issledovaniya’, 3 (6), P. 42–48 (2012).
13. Aduev B.P., Nurmukhametov D.R., et al. Explosive decomposition of TEN with nanoadditives aluminum under the action of pulsed laser radiation of different wavelengths. Khimicheskaya fizika, 32 (8), P. 39–42 (2013).
14. Kalenskii A.V., Zvekov A.A., et al. Influence of the laser irradiation wavelength on the energetic materials’ initiation critical energy. Fizika goreniya i vzryva, 50 (3), P. 98–104 (2014).
15. Gao M., Huang X., Yang P., Kattawar G.W. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media. Applied Optics, 52 (24), P. 5869–5879 (2013).
16. Budak V.P. Methods of solution the radiative transfer equation. Publishing house MEI, Moscow, 52 p. (2007).
17. Ananyeva M.V., Kalenskii A.V., et al. Kinetic regularities of the explosive decomposition of PETN containing nanosized inclusions of aluminium, cobalt, and nickel. Bulletin of Kemerovo State University, 1-1 (57), P. 194–200 (2014).
18. Kalenskii A.V., Ananyeva M.V., Zvekov A.A., Zykov I.Yu. Spectrum dependence of the critical energy density of composites based on pentaerythritol tetranitrate with nikel nanoparticles. Fundamental’nye problemy sovremennogo materialovedenia, 11 (3), P. 340–345 (2014).
19. Zakharov Y.A., Pugachev V.M., et al. Structure of nanosize bimetals Fe–Co and Fe–Ni. Bulletin of the Russian Academy of Sciences: Physics, 77 (2), P. 142–145 (2013).
Review
For citations:
Zvekov A.A., Ananyeva M.V., Kalenskii A.V., Nikitin A.P. Regularities of light diffusion in the composite material pentaerythriol tetranirate - nickel. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(5):685-691.