Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Threshold eigenfunctions and threshold resonances of some relativistic operators

Abstract

We give a review of recent developments on the study of threshold eigenfunctions and threshold resonances of magnetic Dirac operators and Pauli operators. Emphasis is placed on a proof of the non-existence of threshold resonances of the magnetic Dirac operators in a concise manner.

About the Authors

Y. Saitō
University of Alabama at Birmingham
United States

Yoshimi Saitō – Emeritus Professor, Department of Mathematics

Birmingham



T. Umeda
University of Hyogo
Japan

Tomio Umeda – Department of Mathematical Sciences, Professor

Himeji



References

1. Adam C., Muratori B., Nash C. Zero modes of the Dirac operator in three dimensions // Phys. Rev. D. — 1999. — V. 60. — 125001, 8 p.

2. Balinsky A.A., Evans W.D. On the zero modes of Pauli operators // J. Funct. Anal. — 2001. — V. 179. — P. 120–135.

3. Balinsky A.A., Evans W.D. On the zero modes of Weyl-Dirac operators and their multiplicity // Bull. London Math. Soc. — 2002. — V. 34. — P. 236–242.

4. Balinsky A.A., Evans W.D. Zero modes of Pauli and Weyl-Dirac operators // Advances in differential equations and mathematical physics (Birmingham, AL, 2002), 1–9, Contemp. Math., 327, Amer. Math. Soc., Providence, Rhode Island, 2003.

5. Balinsky A.A., Evans W.D. Spectral analysis of relativistic operators. — London: Imperial College Press, 2011.

6. Balinsky A.A., Evans W.D. and Sait¯o. Dirac-Sobolev inequalities and estimates for the zero modes of massless Dirac operators // J. Math. Phys. — 2008. — V. 49. — 043514, 10 p.

7. Edmunds D.E., Evans W.D. Hardy operators, functions spaces and embeddings. — Springer, 2004.

8. Elton D.M. The local structure of zero mode producing magnetic potentials. // Commun. Math. Phys. — 2002. — V. 229. — P. 121–139.

9. Loss M., Yau H.T. Stability of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operators // Commun. Math. Phys. — 1986. — V. 104. — P. 283–290.

10. Morita T. Non-existence of zero resonances of Pauli operators // Funkcialaj Ekvacioj. — 2011. — V. 327. — P. 367–381.

11. Sait¯o Y., Umeda T. The asymptotic limits of zero modes of massless Dirac operators // Lett. Math. Phys. — 2008. — V. 83. — P. 97-106.

12. Sait¯o Y., Umeda T. The zero modes and zero resonances of massless Dirac operators // Hokkaido Math. J. — 2008. — V. 37. — P. 363–388.

13. Sait¯o Y., Umeda T. Eigenfunctions at the threshold energies of magnetic Dirac operators // Rev. Math. Phys. — 2011. — V. 23. — P. 155-178.

14. Sait¯o Y., Umeda T. A sequence of zero modes of Weyl-Dirac operators and an associated sequence of solvable polynomials // In: Spectral Theory, Function Spaces and Inequalities. — Operator Theory: Advances and Applications, Birkhauser, 2011. — V. 219. — P. 197–210.

15. Stein E.M. Singular integrals and differential properties of functions. — Princeton, New Jersey: Princeton University Press, 1970.

16. Thaller B. The Dirac equation. — Berlin: Springer-Verlag, 1992.


Review

For citations:


Saitō Y., Umeda T. Threshold eigenfunctions and threshold resonances of some relativistic operators. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(4):71-77.

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)