Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Simulation of flows in nanochannels by the molecular dynamics method

Abstract

On the basis of molecular dynamics method the algorithm for the first time enables to simulate a plane flow in nanochannels with a pressure drop is proposed. Interaction between molecules of the fluid is simulated by the potential of hard spheres or the Lennard-Jones potential. The properties of nanoflows are studied. It is shown that the structure of fluids in nanochannels differs significantly from its structure in the bulk. Data on the dependence of friction coefficient on the Knudsen and Reynolds numbers are presented. It is established that the pressure drop depends strongly on the accommodation coefficients (for the fluid of hard spheres) or the parameters of the interaction of fluid molecules with molecules of the wall (for the Lennard-Jones fluid).

About the Authors

V. Ya. Rudyak
Novosibirsk State University of Architecture and Civil Engineering; Kutateladze Institute of Thermophysics, Siberian Branch of the RAS
Russian Federation

Head of Department; Leading Researcher; Doctor of Science, Professor

Novosibirsk



A. A. Belkin
Novosibirsk State University of Architecture and Civil Engineering; Kutateladze Institute of Thermophysics, Siberian Branch of the RAS
Russian Federation

Associate Professor; Senior Researcher; PhD, Associate Professor



V. V. Egorov
Novosibirsk State University of Architecture and Civil Engineering
Russian Federation

Assistant Professor



D. A. Ivanov
Novosibirsk State University of Architecture and Civil Engineering; Kutateladze Institute of Thermophysics, Siberian Branch of the RAS
Russian Federation

Assistant Professor; Engineer



References

1. Nelson P.H. Pore-throat sizes in sandstones, tight sandstones, and shales // AAPG Bulletin. — 2009. — V. 93(3). — P. 329-340.

2. Рудяк В.Я. Нелокальное решение уравнения Больцмана // ЖТФ. — 1995. — Т. 65(11). — C. 29-40.

3. Bird G.A. Molecular gas dynamics. — Oxford: Clarendon Press, 1976. — 415 р.

4. Karnidakis G., Beskok A., Aluru N. Microflows and nanoflows. — Interdisciplinary Applied Math. 29. Springer Science+Business Media, Inc., 2005. — 817 p.

5. Thompson P. A., Robbins M.O. Shear flow near solids: Epitaxial order and flow boundary conditions // Phys. Rev. A. — 1990. — V. 41. — P. 6830-6837.

6. Koplik J., Banavar J.R., Willemsen J.F. Molecular dynamics of fluid flow at solid surfaces // Phys. Fluids A. — 1989. — V. 1. — P. 781-794.

7. Heinbuch U., Fischer J. Liquid flow in pores: Slip, no-slip, or multilayer sticking // Phys. Rev. A. — 1989. — V. 40. — P. 1144-1146.

8. Гиршфельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. — М.: Иностранная литература, 1961. — 930 с.

9. Xu L., Sedigh M.G., Sahimi M., Tsotsis T.T. Nonequilibrium molecular dynamics simulation of transport of gas mixtures in nanopores // Phys. Rev. Lett. — 1998. — V. 80. — P. 3511-3514.

10. Рудяк В.Я., Белкин А.А., Иванов Д.А., Егоров В.В. Моделирование процессов переноса на основе метода молекулярной динамики. Коэффициент самодиффузии // ТВТ. — 2008. — Т. 46(1). — C. 35-44.

11. Зубарев Д.Н. Неравновесная статистическая механика. — М.: Наука, 1971. — 415 с.

12. Рудяк В.Я. Статистическая теория диссипативных процессов в газах и жидкостях. — Новосибирск: Наука, 1987. — 271 с.

13. Lauga E., Brenner M.P., Stone H.A. Microfluidics: the no-slip boundary condition // Handbook of Exper. Fluid Dynamics. Ch. 19., N.Y.: Springer, 2007. — P. 1219-1240.

14. Ou J., Perot B., Rothstein J.P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces // Phys. Fluids. — 2004. — V. 16(12). — P. 4635-4643.

15. Watts E.T., Krim J., Widom A. Experimental observation of interfacial slippage at the boundary of molecularly thin films with good substraite // Phys. Rev. B. — 1990. — V. 41(6). — P. 3466-3472.

16. Soong C.Y., Yen T.H., Tzeng P.Y. Molecular dynamics simulation of nanochannels flows with effects of wall lattice-fluid interactions // Phys. Rev. E. — 2007. — V. 76. — 036303.

17. Rudyak V., Belkin A., Egorov V., Ivanov D. Modeling of plane flow with a pressure gradient in a nanochannel // Proc. of 1st European Conference on Microfluidics. Bologna, CHF, 2008, 𝜇FLU08-38.


Review

For citations:


Rudyak V.Ya., Belkin A.A., Egorov V.V., Ivanov D.A. Simulation of flows in nanochannels by the molecular dynamics method. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(4):100-112. (In Russ.)

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)