Interatomic interaction in fcc metals
Аннотация
The parameters of interatomic potential for 10 fcc metals are presented in this paper. The potential is based on the embedded atom method [6]. Parameters are determined empirically by fitting to the equilibrium lattice constant, cohesion energy, vacancy formation energy, bulk modulus and three elastic constants. The proposed potentials are suitable for atomistic computer simulations of practical applications in areas of material science and engineering.
Список литературы
1. Daw M.S. and Baskes M.I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Letters, 50(17), P. 1285–1288 (1983).
2. Daw M.S. and Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29, P. 6443–6453 (1983).
3. Sheng H.W., Kramer M.J., Cadien A., Fujita T., and Chen M.W. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B, 83(13), P. 134118(20 p.) (2011).
4. Hijazi I.A and Park Y.H. Consistent analytic embedded atom potential for face-centered cubic metals and alloys. J. Mater. Sci. Technol., 25(6), P. 835–846 (2009).
5. Dai X.D., Kong Y., Li L.H. and Lin B.X. Extended Finnis-Sinclair potential for b and f metals and alloys. J. Phys.: Condensed Matter, 18, P. 4527–4542 (2006).
6. Zalizniak V.E. and Zolotov O.A. Universal interatomic potential for pure metals. Nanosystems: Physics, Chemistry, Mathematics, 3(1), P. 76–86 (2012).
7. Kittel C. Introduction to solid state physics. Wiley, New York, 996pp.
8. de Boer F.R., Boom R., Mattens W.C.M., Miedema A.R., Niessen A.K. Cohesion in metals V.1. North Holland, Amsterdam, (1988).
9. Ziesche P., Perdew J.P. and Fiolhais C. Spherical voids in the stabilized jellium model: Rigorous theorems and Pad´ e representation of the void-formation energy. Phys. Rev. B, 49(12), P. 7916–7928 (1994).
10. Schultz H. and Ehrhart P., In Atomic defects in metals, Landolt-Bornstein New series, Group III Springer-Verlag, Berlin, (1991).
11. Schaefer H. E. Investigation of thermal equilibrium vacancies in metals by positron annihilation. Phys. Status Solidi A, 102(1), P. 47–65 (1987).
12. Ledbetter H. and Kim S. Monocrystal elastic constants and derived properties of the cubic and the hexagonal elements: in Handbook of elastic properties of solids, liquids, and gases, Vol. 2. Academic Press (2001).
13. Sisoda P. and Verma M.P. Shear moduli of polycrystalline cubic elements. J. Phys. Chem. Solids, 50, P. 223–224 (1989).
14. Ogi H., Ledbetter H., Kim S., and Hirao M. Contactless mode-selective resonance ultrasound spectroscopy: electromagnetic acoustic resonance. J. Acoust. Soc. Am., 106, P. 660–665 (1999).
15. Simmons R.O. and Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook. MIT Press, Cambridge MA (1977).
16. Wycisk W. and Feller-Kniepmeier M. Quenching experiments in high purity Ni. J. Nucl. Mater., 69/70, P. 616–619 (1978).
17. Balluffi R. W. Vacancy defect mobilities and binding energies obtained from annealing studies. J. Nucl. Mater., 69/70, P. 240–263 (1978).
18. Korzhavyi P.A., Abrikosov I.A., Johansson B., Ruban A.V. and Skriver H.L.. First-principles calculations of the vacancy formation energy in transition and noble metals. Phys. Rev. B., 59(18), P. 11693–11703 (1999).
Рецензия
Для цитирования:
. Наносистемы: физика, химия, математика. 2013;4(3):336-343.
For citation:
Zalizniak V.E. Interatomic interaction in fcc metals. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(3):336-343.