Model of the interaction of point source electromagnetic fields with metamaterials
Abstract
We consider Green’s function for layered system. We express it in terms of the well-known scalar s and p ones. For a single NIM layer in vacuum and with a single dispersive Lorentz form for equal electric and magnetic permeabilities ε(ω) and μ(ω), we obtain an explicit form for Green’s function. Also we find Green’s function for multilayered system and obtain recurrence relations for its coefficients.
About the Authors
K. V. PravdinRussian Federation
Saint Perersburg
I. Yu. Popov
Russian Federation
Saint Perersburg
References
1. V.G. Veselago. The electrodynamics of substances with simultaneously negative values of and . Sov. Phys. Usp., 10, P. 509–514 (1968).
2. J.B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, P. 3966–3969 (2000).
3. G.W. Hooft. A comment on the letter by J.B. Pendry. Phys. Rev. Lett., 87, P. 249701 (2001).
4. P.M. Valanju, R.M. Walser. Wave refraction in negative-index media: always positive and very inhomogeneous. Phys. Rev. Lett., 88, P. 187401 (2002).
5. N. Garcia, M. Nieto-Vesperinas. Left-handed materials do not make a perfect lens. Phys. Rev. Lett., 88, P. 207403 (2002).
6. M. Nieto-Vesperinas. Problem of image superresolution with a negative-refractive-index slab. J. Opt. Soc. Am., 21 (4), P. 491–8 (2004).
7. D. Maystre, S. Enoch. Perfect lenses made with left-handed materials: Alice’s mirror? J. Opt. Soc. Am., 21, P. 122–131 (2004).
8. I. Stockman. Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys. Rev. Lett., 98, P. 177404 (2007).
9. B. Gralak, A. Tip. Macroscopic Maxwell’s equations and negative index materials. J. Math. Phys., 51, P. 052902 (2010)
Review
For citations:
Pravdin K.V., Popov I.Yu. Model of the interaction of point source electromagnetic fields with metamaterials. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(4):570-576.