Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The Stochastic foundation of the nanoparticle kinetic description by differential equations with fractional derivatives

Abstract

The paper has been aimed at reviewing the basic concepts of fractional analysis, and typical general kinetic cases of  localized open systems giving rise to applying the equations with fractional derivatives.

About the Author

A. M. Basharov

Russian Federation


References

1. Kohlrausch R. Ueber das Dellmannsche Elektrometer // Ann. Phys. Lpz. 1847. V.12. P. 353-405.

2. Lakes R. Viscoelastic Materials. CUP, 2009.

3. Phillips J.C. Stretched exponential relaxation in molecular and electronic glasses // Rep.Progr. Phys. 1996. V. 59. P.1133-1207.

4. Chamberlin R.F. Experiments and theory of the nonexponential relaxation in liquids, glasses, polymers, and crystals, Phase Transitions 1998. V.65 N.1-4. P.169-209.

5. Огородников И.Н., Пустоваров В.А. Аномальная релаксация околопримесных экситонов в кристаллах боратов лития, легированных ионами церия // Письма в ЖЭТФ 2012. Т.96. В.5. С.338-342.

6. Madsen K.H., Ates S., Lund-Hansen T., Loffler A., Reitzenstein S., Forchel A., Lodahl P. Observation of non-markovian dynamics of a single quantum dot in a micropillar cavity // Phys.Rev.Lett. 2011. V.106, P.233601.

7. Сибатов Р.Т., Учайкин В.В. Дробно-дифференциальный подход к описанию дисперсионного переноса в полупроводниках // УФН 2009. Т.179. В.10. С.1079-1104.

8. Sibatov R.T. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays // Phys. Scr. 2011. V.84 025701.

9. Jonscher A.K. Dielectric Relaxation in Solids. London, Chelsea Dielectrics Press, 1983; Jonscher A.K. Universal Relaxation Law. London, Chelsea Dielectrics Press, 1996.

10. Berg M.A. Multidimensional Incoherent Time-Resolved Spectroscopy and Complex Kinetics // Advances in Chemical Physics, 2012. V.150. P.1-102.

11. Disorder Effects on Relaxational Processes. Eds. Richert R., Blumen A. Berlin, Springer, 1994.

12. Maimistov A.I., Basharov A.M. Nonlinear optical waves. Dordrecht, Kluwer Academic 1999.

13. Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena // Chaos, Solitons and Fractals 1996. V.7. N.9. P.1461-1477.

14. Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: A tutorial survey // Fractional calculus & Applied analysis 2007. V.10. N.3. P.269-308; Mainardi F. Fractional calculus and waves in linear viscoelasticity, London, Imperial College Press, 2010; Gorenflo R. Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time Random Walk, Diffusion Limit // Proc. Of the National Workshop on Fractional Calculus and Statistical Distributions, November 25-27, 2009 in: arXiv:1004.4413v1 [math.PR] 26 Apr 2010.

15. Zaslavsky G.M. Hamiltonian chaos and fractional dynamics. Oxford, 2005.

16. Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys.Reports 2000. V.339. P.1-77.

17. Breuer H.-P., Petruccione F. Theory of open quantum systems. Oxford, 2002.

18. Башаров А.М. Квантовая теория открытых систем на основе стохастических дифференциальных уравнений обобщенного ланжевеновского (невинеровского) типа // ЖЭТФ. 2012. Т. 142, В.3(9). С.419-441.

19. Oldham K.B., Spanier J. The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. Academic Press, 1974.

20. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam, Elsevier, 2006.

21. Герасимов А.Н. Обобщение линейных законов деформации и их приложение к задачам внутреннего трения. АН СССР. Прикладная математика и механика // 1948. Т.12. С.251-259.

22. Caputo M. Lineal model of dissipation whose Q is almost frequency independent - II. // Geophys. J. Astronom. Soc. 1967. V.13. P.529-539.

23. Miller K.S., Ross B. An Introduction to the fractional calculus and fractional differential equations. N.-Y., John Wiley & Sons, 1993.

24. Podlubny I. Fractional differential equations. Academic Press, 1999.

25. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка. Минск, Наука и Техника, 1987.

26. Нахушев А.М. Дробное исчисление и его применение. М., Физматлит, 2003.

27. Псху А.В. Уравнения в частных производных дробного порядка. М., Наука, 2005.

28. Гардинер К.В. Стохастические методы в естественных науках. М., Мир, 1986.

29. Applebaum D. Levy processes and stochastic calculus. CUP, 2009.

30. Sato K. Lévy Processes and Infinitely Divisible distributions. CUP, 1999.

31. Kyprianou A. Introductory lectures on fluctuations of Levy processes with applications. Springer, 2006.

32. Mainardi F., Pagnini G., Saxena R.K. Fox H functions in fractional diffusion // J.Comp.Appl.Math. 2005. V.178. P.321–331.

33. Jacobs K. Stochastic Processes for Physicists. CUP, 2010.

34. Chechkin A.V., Gonchar V.Yu. Linear relaxation processes governed by fractional symmetric kinetic equations // ЖЭТФ 2000. Т.118. В.3. С. 730-748.

35. Bertoin J. Subordinators, Lévy processes with no negative jumps, and branching processes. University of Aarhus, Aarhus, Denmark, 2000.

36. Montroll E.W., Weiss G.H. Random Walks on Lattices. II // J.Math.Phys. 1965. V.6. P.167.

37. Scher H., Montroll E.W. Anomalous transit time dispersion in amorphous solids // Phys.Rev. B 1975. V.12. P.2455.

38. Shlesinger M. Asymptotic solutions of continuous time random walks // J.Stat.Phys. 1974. V.10. P.421-434.

39. Mainardi F., Mura A., Pagnini G. The M-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey // International Journal of Differential Equations 2010. V.2010. Article ID 104505.

40. Станиславский А.А. Вероятностная интерпретация интеграла дробного порядка // ТМФ 2004. Т.138. В.3. С.491-507.

41. Weron K., Stanislavsky A., Jurlewicz A., Meerschaert M.M., Scheffler H.-P. Clustered continuous-time random walks: diffusion and relaxation consequences // Proc. R. Soc. A 2012. V.468. P.1615-1628.

42. Meerschaert M.M., Sikorskii A. Stochastic Models for Fractional Calculus. Berlin, Walter de Gruyter & Co, 2012.

43. Учайкин В.В. Метод дробных производных. Ульяновск: Артишок, 2008.

44. Тарасов В.Е. Модели теоретической физики с интегро-дифференцированием дробного порядка. М., ИКИ, 2011.

45. Тарасов В.Е. Continuous limit of discrete systems with long-range interaction // J. Phys. A: Math. Gen. 2006. V.39 P.14895–14910.


Review

For citations:


Basharov A.M. The Stochastic foundation of the nanoparticle kinetic description by differential equations with fractional derivatives. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(6):47-63. (In Russ.)

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)