Inclusions of metastable superconducting phase of gallium in SmGa2
Abstract
The magnetization M of the SmGa2 compound has a paramagnetic character in a wide temperature range, and when the temperature decreases below 30 K, a significant increase in magnetization is observed, which indicates the formation of a magnetically ordered state. At temperatures below 5 K, a sharp feature is observed on the M(H) dependences, which is the contribution from the magnetization of superconducting submicron gallium inclusions. Analysis of the M(H) dependences measured at different temperatures below 5 K allowed us to assume the presence of two superconducting gallium phases. The critical temperature TC = 5.9 K and the critical field HC (0) = 560 Oe correspond to the formation of a metastable β-phase of gallium, and the critical temperature TC = 8.4 K and the critical field HC (0) = 1100 Oe can be associated with the formation of a thin layer of amorphous gallium on the surface of the β-phase inclusions.
About the Authors
Alexander Evgenievich ShitovRussian Federation
Mikhail Pavlovich Volkov
Russian Federation
References
1. Kanatzidis M.G., Pöttgen R., Jeitschko W. The metal flux: A preparative tool for the exploration of intermetallic compounds. Angew. Chem. Int. Ed. 44, 6996–7023 (2005), doi: 10.1002/anie.200462170.
2. J.A. Blanco, D. Gignoux, J.C. Gomez Sal et al. Magnetic properties of SmGa2. Physica B: condensed matter 175, 4 (1991), 349-353, doi: 10.1016/0921-4526(91)90069-Q.
3. W. J. De Haas, J. Voogd. On the superconductivity of the gallium. Commun. Phys. Lab. Univ. Leiden No. 199d, 733–734 (1929).
4. B. W. Roberts. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 5, 581–821 (1976), doi: 10.1063/1.555540.
5. B. D. Sharma and J. Donohue. A refinement of the crystal structure of gallium. Zeitschrift für Kristallographie 117, 293 (1962).
6. L. Bosio, H. Curien, M. Dupont et al. Structure cristalline de Gaδ. Acta Crystallographica Section B 29, 367 (1973), doi: 10.1107/S0567740873002530.
7. L. Bosio. Crystal structures of Ga(II) and Ga(III). The Journal of Chemical Physics 68, 1221 (1978), doi: 10.1063/1.435841.
8. O. Degtyareva, M. I. McMahon, D. R. Allan et al. Structural Complexity in Gallium under High Pressure: Relation to Alkali Elements. Phys. Rev. Lett. 93, 205502 (2004), doi: 10.1103/PhysRevLett.93.205502.
9. J. Feder, S. Kiser, F. Rothwarf et al. Hysteresis effects in three superconducting phases of gallium. Solid State Comm. 4, 611 (1966), doi: 10.1016/0038-1098(66)90146-3.
10. H. Parr and J. Feder. Superconductivity in 𝛽-Phase Gallium. Phys. Rev. B 7, 166 (1973), doi: 10.1103/PhysRevB.7.166.
11. D. Campanini, Z. Diao, and A. Rydh. Raising the superconducting TC of gallium: In situ characterization of the transformation of 𝛼-Ga into 𝛽-Ga. Phys. Rev. B 97, 184517 (2018), doi: 10.1103/PhysRevB.97.184517.
12. J. Frohlingsdorf, B. Stritzker. Amorphous gallium produced by pulsed excimer laser irradiation. In: Draper C.W., Mazzoldi P. (eds) Laser surface treatment of metals. NATO ASI series vol 115 Springer Dordrecht (1986), doi: 10.1007/978-94-009-4468-8_14.
13. K. O. Moura, K. R. Pirota, F. Béron et al. Superconducting Properties in Arrays of Nanostructured β-Gallium. Scientific Reports 7, 15306 (2017). doi: s41598-017-15738-2.
14. R. Giedigkeit, R. Niewa, W. Schnelle et al. On the Binary Compound YbGa5. ZAAC, 628: 1692-1696 (2002). doi: 10.1002/1521-3749.
15. J.B. Gosk, M. Boćkowski, M. Tokarczyk et al. Superconductivity Study of GaN Highly Doped by Transition Metals. Acta Physica Polonica A, 124, 5 (2013) 877-880. doi: 10.12693/APhysPolA.124.877.
16. A. Petitmangin, B. Gallas, C. Hebert et al. Characterization of oxygen deficient gallium oxide films grown by PLD. Applied Surface Science 278, 153–157 (2013). doi: 10.1016/j.apsusc.2012.10.136.
17. A. Petitmangin, C. Hébert, J. Perrière et al. Metallic clusters in nonstoichiometric gallium oxide films. J. Appl. Phys. 109, 013711 (2011). doi: 10.1063/1.3531536.
18. V. Heera, J. Fiedler, R. Hübner et al. Silicon films with gallium-rich nanoinclusions: from superconductor to insulator New J. Phys. 15 083022 (2013). doi: 10.1088/1367-2630/15/8/083022.
19. Y. B. Sun, Z. F. Di, T. Hu et al. The Insulator to Superconductor Transition in Ga-Doped Semiconductor Ge Single Crystal Induced by the Annealing Temperature. Adv. in Cond. Matt. Phys., 4, 963768 (2015). doi: 10.1155/2015/963768.
20. R.L. Meng, B. Lorenz, Y.S. Wang et al. Study of binary and pseudo-binary intermetallic compounds with AlB2 structure. Physica C 382 (2002) 113–116, doi: 10.1016/S0921-4534(02)01208-X.
21. S.V. Demishev, Yu. V. Kosichkin, N.E. Sluchanko et al. Crystallization of metastable phases and superconductivity in amorphous gallium antimonide. JETP, 77, 1, 68 (1993).
22. T. A. Komissarova; R. V. Parfeniev; S. V. Ivanov. Comment on “Superconductivity in heavily compensated Mg-doped InN” [Appl. Phys. Lett. 94, 142108 (2009)]. Appl. Phys. Lett. 95, 086101 (2009), doi: 10.1063/1.3212864
Review
For citations:
Shitov A.E., Volkov M.P. Inclusions of metastable superconducting phase of gallium in SmGa2. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5).
JATS XML
