Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Inverse Analysis of a Loaded Heat Conduction Equation

Abstract

This work considers an inverse
problem for a heat conduction equation that includes fractional
loaded terms and coefficients varying with spatial coordinates. By
reformulating the original equation into a system of equivalent
loaded integro-differential equations, we establish sufficient
conditions ensuring the existence and uniqueness of the solution.
The study focuses on determining the multidimensional kernel
associated with the fractional heat conduction operator. The
approach is based on the contraction mapping principle and the use
of Riemann-Liouville fractional integrals, providing a mathematical
framework applicable to diffusion processes with spatial
heterogeneity and memory effects.

References

1. $$\textbf{References}$$

2. \begin{enumerate}

3. \bibitem{1}

4. Hall, M.R. {\it Materials for Energy Efficiency and Thermal Comfort in Buildings}. Woodhead Publishing Series in Energy, 2010. ISBN 978-1-84569-526-2.

5. \bibitem{2}

6. Jiang, Z., Zhao, J., Xie, H. {\it Microforming Technology}, Chapter 3 – Scaling Laws. In: Zhengyi Jiang, Jingwei Zhao, Haibo Xie (Eds.), Academic Press, 2017, pp. 53–71. https://doi.org/10.1016/B978-0-12-811212-0.00003-0.

7. \bibitem{3}

8. Samko, S.G., Kilbas, A.A., Marichev, O.I. {\it Fractional Integrals and Derivatives: Theory and Applications}. Gordon and Breach, New York, 1993.

9. \bibitem{4}

10. Pskhu, A.V. {\it Partial Differential Equations of Fractional Order}. Nauka, Moscow, 2005 [in Russian].

11. \bibitem{5}

12. Gorenflo, R., Mainardi, F. Fractional calculus: integral and differential equations of fractional order. {\it arXiv preprint}, 2008. https://doi.org/10.48550/arXiv.0805.3823.

13. \bibitem{6}

14. Abbas, S., Benchohra, M.N., Guerekata, G.M. {\it Advanced Fractional Differential and Integral Equations}. Nova Science Publishers, New York, 2014.

15. \bibitem{7}

16. Varieschi, G.U. Applications of fractional calculus to Newtonian mechanics. {\it Journal of Applied Mathematics and Physics}, 6(6), 2018. https://doi.org/10.4236/jamp.2018.66105.

17. \bibitem{8}

18. Mulla, M. Fractional calculus, fractional differential equations and applications. {\it Open Access Library Journal}, 7, 1–9 (2020). https://doi.org/10.4236/oalib.1106244.

19. \bibitem{9}

20. Schneider, W.R. Fractional diffusion. In: {\it Dynamics and Stochastic Processes: Theory and Applications}. Springer, Berlin, 1990, Vol. 355. https://doi.org/10.1007/3-540-52347-2-37.

21. \bibitem{10}

22. Henry, B.I., Langlands, T.A.M., Straka, P. {\it An Introduction to Fractional Diffusion}. World Scientific, 2009.

23. \bibitem{11}

24. Juraev, D.A., Noeiaghdam, S. Modern problems of mathematical physics and their applications. {\it Axioms}, 11(2), 45 (2022). https://doi.org/10.3390/axioms11020045.

25. \bibitem{12}

26. Yang, X.J., Baleanu, D., Srivastava, H.M. {\it Local Fractional Integral Transforms and Their Applications}. Elsevier, 2016. https://doi.org/10.1016/C2014-0-04768-5.

27. \bibitem{13}

28. Al-Refai, M., Abdeljawad, T. Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel. {\it Advances in Differential Equations}, 315 (2017). https://doi.org/10.1186/s13662-017-1356-2.

29. \bibitem{14}

30. Li, X.Y., Xiao, A.G. Space-fractional diffusion equation with variable coefficients: well-posedness and Fourier pseudo-spectral approximation. {\it Journal of Scientific Computing}, 87, 28 (2021). https://doi.org/10.1007/s10915-021-01435-w.

31. \bibitem{15}

32. Zheng, X., Ervin, V.J., Wang, H. Numerical approximations for variable-coefficient fractional diffusion equations with non-smooth data. {\it Computational Methods in Applied Mathematics}, 20(3), 573–589 (2020). https://doi.org/10.1515/cmam-2019-0038.

33. \bibitem{16}

34. Anley, E.F., Zheng, Z. Finite difference approximation for a space-fractional convection–diffusion equation with variable coefficients. {\it Symmetry}, 12(3), 485 (2020). https://doi.org/10.3390/sym12030485.

35. \bibitem{17}

36. Alikhanov, A.A. A new difference scheme for the time-fractional diffusion equation. {\it Journal of Computational Physics}, 280, 424–438 (2015). https://doi.org/10.1016/j.jcp.2014.09.031.

37. \bibitem{18}

38. Alsidrani, F., Kilicman, A., Senu, N. Approximate solutions for the time-fractional Fornberg–Whitham equation with variable coefficients. {\it Fractal and Fractional}, 7, 260 (2023). https://doi.org/10.3390/fractalfract7030260.

39. \bibitem{19}

40. Durdiev, D.K., Nuriddinov, J.Z. On the investigation of the inverse problem for a parabolic integro-differential equation with variable thermal conductivity. {\it Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Kompyuternye Nauki}, 30(4), 572–584 (2020).

41. \bibitem{20}

42. Farhood, A.K., Mohammed, O.H., Taha, B.A. Solving fractional time-delay diffusion equation with variable-order derivative using shifted Legendre–Laguerre operational matrices. {\it Arabian Journal of Mathematics}, 12, 400–416 (2023). https://doi.org/10.1007/s40065-022-00416-7.

43. \bibitem{21}

44. Martins, F.M.N., Mota, P. An adapted plane waves method for heat conduction problems. {\it Applied Mathematics and Computation}, 415, 126689 (2022). https://doi.org/10.1016/j.amc.2021.126689.

45. \bibitem{22}

46. Yang, X.Y., Xiao, A.G. Space-fractional diffusion equation with variable coefficients: well-posedness and Fourier pseudo-spectral approximation. {\it Journal of Scientific Computing}, 87(1), 28 (2021). https://doi.org/10.1007/s10915-021-01435-w.

47. \bibitem{23}

48. Agarwal, P., Hubert, F., Dermenjian, Y., Baltaeva, U., Hasanov, B. The Cauchy problem for the heat equation with a fractional load. {\it Discrete and Continuous Dynamical Systems – S}, (2024). https://doi.org/10.3934/dcdss.2024176.

49. \bibitem{24}

50. Nakhushev, A.M. {\it Loaded Equations and Their Applications}. Nauka, Moscow, 2012.

51. \bibitem{25}

52. Krall, A.M. The development of general differential and general differential–boundary systems. {\it Rocky Mountain Journal of Mathematics}, 5(4), 493–542 (1975). https://doi.org/10.1216/RMJ-1975-5-4-493.

53. \bibitem{26}

54. Islomov, B., Baltaeva, U. Boundary value problems for a third-order loaded parabolic–hyperbolic equation with variable coefficients. {\it Electronic Journal of Differential Equations}, 2015(221), 1–10 (2015).

55. \bibitem{27}

56. Assanova, A.T., Kadirbayeva, Zh.M. Periodic problem for an impulsive system of loaded hyperbolic equations. {\it Electronic Journal of Differential Equations}, 2018(72), 1–8 (2018).

57. \bibitem{28}

58. Jenaliyev, M.T., Ramazanov, M.I. {\it Loaded Equations as Perturbations of Differential Equations}. Gylym, Almaty, 2010 [in Russian].

59. \bibitem{29}

60. Yuldashev, T.K., Islomov, B.I., Alikulov, E.K. Boundary-value problems for loaded third-order parabolic–hyperbolic equations in unbounded three-dimensional domains. {\it Lobachevskii Journal of Mathematics}, 41(5), 926–944 (2020). https://doi.org/10.1134/S1995080220050145.

61. \bibitem{30}

62. Amangaliyeva, M.M., Jenaliyev, M.T., Ramazanov, M.I., Iskakov, S.A. On a boundary value problem for the heat equation and a singular integral equation associated with it. {\it Applied Mathematics and Computation}, 399, 126009 (2021).

63. \bibitem{31}

64. Kosmakova, M., Akhmanova, D., Izhanova, K. Boundary value problem with a load in the form of a fractional integral. {\it International Journal of Mathematics and Mathematical Sciences}, 2024, Article ID 7034103, 12 pages. https://doi.org/10.1155/2024/7034103.

65. \bibitem{32}

66. Baltaeva, U., Babajanova, Y., Agarwal, P., Ozdemir, N. Solvability of a mixed problem with an integral gluing condition for a loaded equation with the Riemann–Liouville fractional operator. {\it Journal of Computational and Applied Mathematics}, 425, 115066 (2023). https://doi.org/10.1016/j.cam.2023.115066.

67. \bibitem{33}

68. Khubiev, K.U. Analogue of the Tricomi problem for a characteristically loaded hyperbolic–parabolic equation with variable coefficients. {\it Ufa Mathematical Journal}, 9(2), 92–101 (2017).

69. \bibitem{34}

70. Baltaeva, U.I. Boundary-value problem for a loaded mixed-type equation with a characteristic line of type change. {\it Journal of Mathematical Sciences}, 272, 202–214 (2023). https://doi.org/10.1007/s10958-023-06410-4.

71. \bibitem{35}

72. Durdiev, D.K., Jumaev, J.J. One-dimensional inverse problems for determining the kernel of the integro-differential heat equation in a bounded domain. {\it Nonautonomous Dynamical Systems}, 10(1), 20220163 (2023). https://doi.org/10.1515/msds-2022-0163.

73. \bibitem{36}

74. Denisov, A.M., Efimov, A.A. The inverse problem for an integro-differential equation and its solution method. {\it Computational Mathematics and Modeling}, 30, 403–412 (2019). https://doi.org/10.1007/s10598-019-09466-7.

75. \bibitem{37}

76. Durdiev, D.K., Zhumaev, Z.Zh. Memory kernel reconstruction problems in the integro-differential equation of a rigid heat conductor. {\it Mathematical Methods in the Applied Sciences}, 1–15 (2020). https://doi.org/10.1002/mma.7133.

77. \bibitem{38}

78. Ladyzhenskaya, O.A. {\it The Boundary Value Problems of Mathematical Physics}. Applied Mathematical Sciences, Vol. 49. Springer, Berlin, 1985.

79. \bibitem{39}

80. Agarwal, R.P., Baltaeva, U., Hubert, F., Khasanov, B. Existence and uniqueness of the solution to initial and inverse problems for integro-differential heat equations with fractional load. {\it Electronic Journal of Differential Equations}, 2024(64), 1–19 (2024).

81. \end{enumerate}


Review

For citations:


Baltaeva U., Agarwal P., Khasanov B., Hayitbayev H., Hubert F. Inverse Analysis of a Loaded Heat Conduction Equation. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6).

Views: 15

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)