Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Defective Aluminum Nitride Monolayer as Electrode Material for Supercapacitor Applications: A DFT Study

Abstract

This report analyzes the quantum capacitance properties of aluminum nitride nanosheets (AlNNS) with defects, focusing on their potential use in supercapacitors. We validated the structural stability of the primitive cell through cohesive energy calculations and phonon spectrum analysis. Our findings indicate that monolayers containing aluminum (Al), nitrogen (N), or with Al-N deficiencies exhibit either metallic characteristics or small bandgap semiconducting behavior. Calculations of defect formation energy indicate that N-deficient AlNNS is the least favorable option. The presence of under-coordinated atoms near the defect leads to the emergence of new impurity states close to the Fermi level. This prompted us for a detailed examination of their quantum capacitance, which is heavily influenced by the density of states around the Fermi energy. Our study reveals that Al-deficient AlNNS achieves a maximum quantum capacitance (CQMax) of 690µF/cm² in the positively biased region, making it a suitable candidate as anodic material in supercapacitor applications. In comparison, the nitrogen-deficient AlNNS reaches a CQMax of 313µF/cm² and a maximum surface charge capacity (QMax) of -91µC/cm², highlighting its potential as a cathodic material. The Al-N-deficient AlNNS shows intermediate behavior with prominent quantum capacitance peaks in both biased regions, offering additional flexibility for potential applications.

About the Authors

Shamsuddin Ahmad
Jai Prakash University, Chhapra, India
India


Md. Mahfoozul Haque
Department of Physics, Marwari College, T. M. Bhagalpur University,
India


Zaheer Abbas
Government Engineering College, Jehanabad, Bihar-804407
India


Md. Shahzad Khan
Jai Prakash University, Chhapra, India
India


References

1. Z.E. Hughes, T.R. Walsh, Computational chemistry for graphene-based energy applications: progress and challenges, Nanoscale 7 (2015) 6883–6908.

2. D. Ponnammaa, P. Vijayan P, M. Al Ali Al-Maadeed, 3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors, Mater. Des. 117 (2017) 203–212.

3. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828.

4. A.J. Pak, E. Paek, G.S. Hwang, Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid, Phys. Chem. Chem. Phys. 15 (2013) 19741–19747, https://doi.org/ 10.1039/C3CP52590B.

5. M.D. Stoller, C.W. Magnuson, Y. Zhu, S. Murali, J.W. Suk, R. Piner, R.S. Ruoff, Interfacial capacitance of single layer graphene, Energy Environ. Sci. 4 (2011) 4685–4689.

6. J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 4 (2009) 505–509, https://doi.org/10.1038/ nnano.2009.177.

7. I. Vurgaftman, J. N. Meyer. Band parameters for nitrogen-containing semiconductors. Journal of applied physics, 94(6), 3675-3696 (2003).

8. Wu, J. (2009). When group-III nitrides go infrared: New properties and perspectives. Journal of applied physics, 106(1).

9. Zhang, Y., Liu, J., He, R., Zhang, Q., Zhang, X., & Zhu, J. (2001). Synthesis of aluminum nitride nanowires from carbon nanotubes. Chemistry of materials, 13(11), 3899-3905.

10. Wu, Q., Hu, Z., Wang, X., Lu, Y., Chen, X., Xu, H., & Chen, Y. (2003). Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. Journal of the American Chemical Society, 125(34), 10176-10177.

11. Stan, G., Ciobanu, C. V., Thayer, T. P., Wang, G. T., Creighton, J. R., Purushotham, K. P., ... & Cook, R. F. (2008). Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonanceatomic force microscopy. Nanotechnology, 20(3), 035706.

12. Zhang, X., Liu, Z., & Hark, S. (2007). Synthesis and optical characterization of single-crystalline AlN nanosheets. Solid state communications, 143(6-7), 317-320.

13. Lei, M., Song, B., Guo, X., Guo, Y. F., Li, P. G., & Tang, W. H. (2009). Large-scale AlN nanowires synthesized by direct sublimation method. Journal of the European Ceramic Society, 29(1), 195-200.

14. Wang, P., Wang, T., Wang, H., Sun, X., Huang, P., Sheng, B., ... & Wang, X. (2019). Experimental evidence of large bandgap energy in atomically thin AlN. Advanced Functional Materials, 29(36), 1902608.

15. Han, L., Li, Y., Zhao, Y., Meng, X., Lei, X., Yang, X., ... & Liu, M. (2024). One-time mass production of AlN nanosheets: Synergistic effect of high-energy shear and effective collision in a sanding mill. Ceramics International, 50(11), 19642-19649.

16. S. Javaheri, M. Babaeipour, A. Boochani, S. Naderi. Electronic and optical properties of V doped AlN nanosheet: DFT calculations. Chinese Journal of Physics, 56(6), 2698-2709 (2018).

17. Y. Peng, C. Xia, H. Zhang, T. Wang, S. Wei, Y. Jia. (2014). Tunable electronic structures of p-type Mg doping in AlN nanosheet. Journal of Applied Physics, 116(4), (2014).

18. P. Liu, A. De Sarkar, R. Ahuja, R. (2014). Shear strain induced indirect to direct transition in band gap in AlN monolayer nanosheet. Computational materials science, 86, 206-210 (2014).

19. P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. G. S. A. Golias, S. A. Giamini, C. Grazianetti et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111). Applied Physics Letters, 103(25), (2013).

20. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Physical review letters, Phys.Rev.Lett.77 3865 (1996).

21. H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B 13 5188 (1976).

22. N. Troullier, J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43 1993 (1991).

23. P. Ordejon, E. Artacho, J. M. Soler, Self-Consistent Order-N Density-Functional Calculations for Very Large Systems. Physical Review B. 53, R10441 (1996).

24. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. J. Sanchez-Portal. The Siesta Method for Ab Initio Order-N Materials Simulation. J. Phys.: Condens. Matter 14 2745 (2002).

25. The MathWorks Inc. (2022). Statistics and Machine Learning Toolbox Documentation, Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com/help/stats/index.html.

26. E. F. De Almeida, E. F. Brito Mota, C. M. de Castilho, A. Kakanakova-Georgieva, G. K. Gueorguiev. Defects in hexagonal-AlN sheets by first-principles calculations. The European Physical Journal B, 85, 1-9 (2012).

27. B. SanthiBhushan, M. S. Khan, V. K. Bohat, A. Srivastava. Quantum capacitance estimations of pyrrolic-rich graphene for supercapacitor electrodes. IEEE Transactions on Nanotechnology, 17(2), 205-211 (2017).

28. G. M. Yang, Q. Xu, X. Fan, W T. Zheng. Quantum capacitance of silicene-based electrodes from first-principles calculations. The Journal of Physical Chemistry C, 122(4), 1903-1912 (2013).

29. Q. Xu, G. M. Yang, W. T. Zheng. DFT calculation for stability and quantum capacitance of MoS2 monolayer-based electrode materials. Materials Today Communications, 22, 100772 (2020).

30. Z. R. Khan, Z. Abbas, N. Akhter, M. S. Khan, M. S. Khan. Enhanced quantum capacitance in Ti, V, Cr, Fe, Ga, Ge, Se, and Br doped arsenene: a first principles investigation. Chemical Physics Letters, 823, 140500 (2023).


Review

For citations:


Ahmad Sh., Haque M., Abbas Z., Khan M. Defective Aluminum Nitride Monolayer as Electrode Material for Supercapacitor Applications: A DFT Study. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6).

Views: 15

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)