PHYSICO-MECHANICAL PROPERTIES AND RADIATION TOLERANCE OF MAGNESIUM-INDIUM FERRITE SYNTHESIZED BY THE POLYMER-NITRATE METHOD
Abstract
The paper discusses the features of polymer-nitrate synthesis of fine MgFeInO4 particles and presents experimental study results of the physico-mechanical properties of ceramics produced on their basis. According to powder XRD data, a single-phase ferrite-spinel powder can be obtained only as a result of high-temperature treatment of an X-ray amorphous precursor prepared by thermal decomposition of a mixture of polyvinyl alcohol and metal nitrates. Ceramics produced using submicron MgFeInO4 particles have a density close to the theoretical one. The results of microhardness measurements using the Vickers method showed that the resulting material has high hardness. The band gap energy of MgFeInO4 was determined from the DRS data. Based on the crystallographic and electrophysical characteristics of the synthesized material, its resistance to radiation-induced structural changes was predicted.
Keywords
About the Authors
Galina NikiforovaRussian Federation
Maria Smirnova
Russian Federation
Olga Kondrat'eva
Russian Federation
Alexey Yapryntsev
Russian Federation
Maria Dranik
Russian Federation
Valery Ketsko
Russian Federation
References
1. References
2. Orlova A.I., Ojovan M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2019, 12 (16), 2638.
3. https://doi.org/10.3390/ma12162638
4. Kalita P., Parveen R., Ghosh S., Grover V., Mishra Y.K., Avasthi D.K. Progress in radiation tolerant materials: current insights from the perspective of grain size and environmental temperature. Journal of Alloys and Compounds. 2025, 1012, 178330.
5. https://doi.org/10.1016/j.jallcom.2024.178330
6. More C.V., Akman F., Dilsiz K., Ogul H., Pawar P.P. Estimation of neutron and gamma-ray attenuation characteristics of some ferrites: Geant4, FLUKA and WinXCom studies. Applied Radiation and Isotopes, 2023, 197, 110803.
7. https://doi.org/10.1016/j.apradiso.2023.110803
8. Li Z., Chan S.-K., Garner F.A., Brandt R.C. Elastic stability of high dose neutron irradiated spinel. Journal of Nuclear Materials, 1995, 219,139-142.
9. https://doi.org/10.1016/0022-3115(94)00387-4
10. Wang L., Gong W., Wang S., Ewing R.C. Comparison of ion-beam irradiation effects in X2YO4 compounds. Journal of the American Ceramic Society, 1999, 82 (12) 3321-3329.
11. https://doi.org/10.1111/j.1151-2916.1999.tb02246.x
12. Pellerin N., Dodane-Thiriet C., Montouillout V., Beauvy M., Massiot D. Cation sublattice disorder induced by swift heavy ions in MgAl2O4 and ZnAl2O4 spinels: 27Al Solid-State NMR Study. The Journal of Physical Chemistry B, 2007, 111 (44) 12707-12714.
13. https://doi.org/10.1021/jp072620t
14. Wiss T., Matzke Hj. Heavy ion induced damage in MgAl2O4, an inert matrix candidate for the transmutation of minor actinides. Radiation Measurements, 1999, 31 (1-6), 507-514.
15. https://doi.org/10.1016/S1350-4487(99)00113-4
16. Yasuda K., Matsumura S. Radiation damage effects in insulators for fusion reactors: microstructure evolution in MgO-Al2O3 system oxide crystals. Advances in Science and Technology, 2006, 45, 1961-1968.
17. https://doi.org/10.4028/www.scientific.net/AST.45.1961
18. Burghartz M., Matzke Hj., Léger C., Vambenepe G., Rome M. Inert matrices for the transmutation of actinides: fabrication, thermal properties and radiation stability of ceramic materials. Journal of Alloys and Compounds, 1998, 271-273, 544-548.
19. https://doi.org/10.1016/S0925-8388(98)00149-2
20. Neeft E.A.C., Bakker K., Schram R.P.C., Conrad R., Konings R.J.M. The EFTTRA-T3 irradiation experiment on inert matrix fuels. Journal of Nuclear Materials, 2003, 320 (1–2), 106-116.
21. https://doi.org/10.1016/S0022-3115(03)00176-4
22. Kinoshita C., Fukumoto K., Fukuda K., Garner F.A., Hollenberg G.W. Why is magnesia spinel a radiation-resistant material? Journal of Nuclear Materials, 1995, 219, 143-451.
23. https://doi.org/10.1016/0022-3115(94)00388-2
24. Pascard H., Studer F. Review of irradiation effects on ferrites: results in the world from 1970 to 1995. Journal de Physique IV, 1997, 7 (C1), 211-214.
25. https://doi.org/10.1051/jp4:1997180
26. Houpert C., Hervieu M., Groult D., Studer F., Toulemonde M. HREM investigation of GeV heavy ion latent tracks in ferrites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1988, 32 (1-4), 393-396.
27. https://doi.org/10.1016/0168-583X(88)90243-1
28. Meillon S., Dunstetter F., Pascard H., Rodriguez-Carvajal J. Fast neutron irradiated magnetite and haematite investigated by neutron diffraction. Journal de Physique IV Proceedings, 1997, 07 (C1), C1-607-C1-608.
29. https://doi.org/10.1051/jp4:19971251
30. Sickafus K.E., Yu N., Nastasi M. Radiation resistance of the oxide spinel: the role of stoichiometry on damage response. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 116 (1-4), 85-91.
31. https://doi.org/10.1016/0168-583X(96)00015-8
32. Reznitskiy L.A. Kalorimetriya tverdogo tela (strukturnyye, magnitnyye, elektronnyye prevrashcheniya). Moskva: Izdatel'stvo Moskovskogo universiteta, 1981, 184 s.
33. Šepelák V., Becker K.D. Comparison of the cation inversion parameter of the nanoscale milled spinel ferrites with that of the quenched bulk materials. Materials Science and Engineering: A, 2004, 375-377, 861-864.
34. https://doi.org/10.1016/j.msea.2003.10.178
35. Kingery W.D. Introduction to ceramics, 2nd Edition. John Wiley & Sons, 1976, 1056 p.
36. Shen T.D. Radiation tolerance in a nanostructure: Is smaller better? Nuclear Instruments and Methods in Physics Research B, 2008, 266 (6), 921-925.
37. https://doi.org/10.1016/j.nimb.2008.01.039
38. Andrievskii R.A. Radiation stability of nanomaterials. Nanotechnologies in Russia, 2011, 6, 357-369.
39. https://doi.org/10.1134/S1995078011030037
40. Lokhande R.M., Vinayak V., Mukhamale S.V., Khirade P.P. Gamma radiation shielding characteristics of various spinel ferrite nanocrystals: a combined experimental and theoretical investigation. RSC Advances, 2021, 11 (14), 7925-7937.
41. https://doi.org/10.1039/d0ra08372k
42. Satalkar M., Kane S.N., Kulriya P.K., Avasthi D.K. Swift heavy ion irradiated spinel ferrite: A cheap radiation resistant material. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 379, 235-241.
43. https://doi.org/10.1016/j.nimb.2016.03.052
44. Sharma S.K., Kumar R., Siva Kumar V.V., Knobel M., Reddy V.R., Gupta A., Singh. M. Role of electronic energy loss on the magnetic properties of Mg0.95Mn0.05Fe2O4 nanoparticles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 248 (1) 37-41.
45. https://doi.org/10.1016/j.nimb.2006.03.188
46. Parvatheeswara Rao B., Rao K.H., Subba Rao P.S.V., Mahesh Kumar A., Murthy Y.L.N., Asokan K., Siva Kumar V.V., Kumar R., Gajbhiye N.S., Caltun O.F. Swift heavy ions irradiation studies on some ferrite nanoparticles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 244 (1), 27-30.
47. https://doi.org/10.1016/j.nimb.2005.11.009
48. Hassan H.E., Sharshar T., Hessien M.M., Hemeda O.M. Effect of γ-rays irradiation on Mn–Ni ferrites: Structure, magnetic properties and positron annihilation studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 304, 72-79.
49. https://doi.org/10.1016/j.nimb.2013.03.053
50. Jagadeesha Angadi V., Anupama A.V., Choudhary H.K., Kumar R., Somashekarappa H.M., Mallappa M., Rudraswamy B., Sahoo B. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics. Journal of Solid State Chemistry, 2017, 246, 119-124.
51. https://doi.org/10.1016/j.jssc.2016.11.017
52. Chikhale R.N., Shinde V.S., Bhatia P.G. Investigate structural, morphological, electrical, dielectric and magnetic properties of dysprosium doped cobalt-nickel ferrites and their response to gamma irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2024, 550, 165320.
53. https://doi.org/10.1016/j.nimb.2024.165320
54. Manjunatha, Biradar S., Bennal A.S., Patil S., Sayyed M.I., Patil Y.N., Megalamani M.B., Hegde B.G. Experimental investigation on the role of Bi³⁺ composition in structural, elastic, and radiation shielding properties of multifunctional cobalt-nickel nanoferrites. Journal of Alloys and Compounds, 2025, 1033, 181255.
55. https://doi.org/10.1016/j.jallcom.2025.181255
56. Kirichok P.P., Antoshchuk, Mössbauer investigations into magnesium ferrite doped with indium and scandium ions. Soviet Physics Journal. 1977, 20, 627-630.
57. https://doi.org/10.1007/BF00893584
58. Kimizuka N., Mohri T. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3–A2O3–BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000°C. Journal of Solid State Chemistry. 1985, 60, 382-384.
59. https://doi.org/10.1016/0022-4596(85)90290-7
60. Matvejeff M., Lindén J., Karppinen M., Yamauchi H. Studies on InFeMO4 (M = Mg, Co, Ni, Cu and Zn) compounds: crystal structure and cation distribution. Journal of Solid State Chemistry. 2007, 180 (8), 2316-2322.
61. https://doi.org/10.1016/j.jssc.2007.04.032
62. Naik M.Z., Salker A.V. Tailoring the super-paramagnetic nature of MgFe2O4 nanoparticles by In3+ incorporation. Materials Science and Engineering B, 2016, 211, 37-44.
63. https://doi.org/10.1016/j.mseb.2016.05.019
64. Nečas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Physics, 2012, 10 (1). 181-188.
65. https://doi.org/10.2478/s11534-011-0096-2
66. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G., Khort A.A., Roslyakov S.I., Trusov G.V., Moskovskikh D.O. Effect of the residual water content in gels on solution combustion synthesis temperature. Journal of Sol-Gel Science and Technology, 2020, 93, 251-261.
67. https://doi.org/10.1007/s10971-019-05189-8
68. Kondrat'eva O.N., Smirnova M.N., Nikiforova G.E., Yapryntsev A.D., Kondakov D.F., Yagudin L.D. Ceramic materials prepared from nanocrystalline InFeZnO4 powder: optical and mechanical properties, and evaluation of radiation tolerance. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (5), 693-701.
69. https://doi.org/10.17586/2220-8054-2024-15-5-693-701
70. Smirnova M.N., Kondrat’eva O.N., Nikiforova G.E., Yapryntsev A.D., Averin A.A., Khoroshilov A.V. Features of synthesis of InGaMgO4 from nitrate-organic precursors and study of its physical properties. Russian Journal of Inorganic Chemistry, 2024, 69, 1119-1126.
71. https://doi.org/10.1134/S003602362460117X
72. Smirnova M.N., Nikiforova G.E., Kondrat’eva O.N. Synthesis of magnesium ferrite by combustion of glycine-nitrate gel: the influence of reagents on the gel-precursor and the microstructure of nanopowders, Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (2), 224-232.
73. https://doi.org/10.17586/2220-8054-2024-15-2-224-232
74. Köferstein R., Walther T., Hesse D., Ebbinghaus S.G. Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. Journal of Materials Science, 2013, 48, 6509-6518.
75. https://doi.org/10.1007/s10853-013-7447-x
76. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E., Khoroshilov A.V., Arkhipenko A.A., Gurevich V.M. Magnesium indate: synthesis and thermodynamic properties. Russian Journal of Inorganic Chemistry, 2022, 67, 1221-1227.
77. https://doi.org/10.1134/S0036023622080198
78. Jayachandran M., Dali S.E., Chockalingam M.J. Synthesis and characterisation of semiconductor oxide MgIn2O4 powder. Bulletin of Electrochemistry, 1998, 14 (8-9), 283-285.
79. Pokrovskii B.I., Gapeev A.K., Goryaga A.N., Komissarova L.N. Kristallokhimiya i magnetizm smeshannykh galliy- i indiysoderzhashchikh ferritov so strukturnoy shpineli. Ferrimagnetism (Izd. Mosk. Gos. Univ., Moscow), 1975, 137-146.
80. Navrotsky A., Kleppa O.J. Thermodynamics of formation of simple spinels. Journal of Inorganic and Nuclear Chemistry, 1968, 30(2), 479-498.
81. https://doi.org/10.1016/0022-1902(68)80475-0
82. Lebedeva S.I. Opredelenie mikrotverdosti mineralov. Izdatel'stvo akademii nauk SSSR, Moskva, 1963, 124 s.
83. Khrushchev M.M. Trenie, iznos i mikrotverdost' materialov: Izbrannye raboty (k 120-letiyu so dnya rozhdeniya). KRASAND, Moskva, 2012, 512 s.
84. Anagha A., Joshua A., Chacko B., Babu T.A., Srigiri S., Madhuri W. Structural, optical and magnetic properties of MgFe2O4 and Ni0.5Zn0.5Fe2O4. Materials Chemistry and Physics, 2024, 313, 128746.
85. https://doi.org/10.1016/j.matchemphys.2023.128746
86. Sirimanne P.M., Sonoyama N., Sakata T. Semiconductor sensitization by microcrystals of MgIn2S4 on wide bandgap MgIn2O4. Journal of Solid State Chemistry, 2000, 154 (2), 476-482.
87. https://doi.org/10.1006/jssc.2000.8867
88. Ueda N., Hosono H., Kawazoe H. Noble transparent semiconductor: MgIn2O4. Solid State Phenomena, 1996, 51-52, 317-322.
89. https://doi.org/10.4028/www.scientific.net/SSP.51-52.317
90. Pearton S.J., Yang J., Cary P.H., Ren F., Kim J., Tadjer M.J., Mastro M.A. A review of Ga2O3 materials, processing, and devices. Applied Physics Review, 2018, 5 (1), 011301.
91. https://doi.org/10.1063/1.5006941
92. Geng H., Zhou Q., Zheng J., Gu H. Preparation of porous and hollow Fe3O4@C spheres as an efficient anode material for a high performance Li-ion battery. RSC Advances, 2014, 4 (13), 6430-6434.
93. https://doi.org/10.1039/C3RA45300F
94. da Silva M.P., do Souza A.C.A., Ferreira Á.R.D., do Nascimento P.L.A., Fraga T.J.M., Cavalcanti J.V.F.L., Ghislandi M.G., da Motta Sobrinho M. A. Synthesis of superparamagnetic Fe3O4–graphene oxide-based material for the photodegradation of clonazepam, Scientific Reports, 2024, 14, 18916.
95. https://doi.org/10.1038/s41598-024-67352-8
96. Naguib H.M., Kelly R. Criteria for bombardment-induced structural changes in non-metallic solids. Radiation Effects, 1975, 25 (1), 1-12.
97. https://doi.org/10.1080/00337577508242047
98. Batsanov S.S. The concept of electronegativity. Conclusions and prospects. Russian Chemical Reviews, 1968, 37 (5), 332-351.
99. https://doi.org/10.1070/RC1968v037n05ABEH001639
Review
For citations:
Nikiforova G., Smirnova M., Kondrat'eva O., Yapryntsev A., Dranik M., Ketsko V. PHYSICO-MECHANICAL PROPERTIES AND RADIATION TOLERANCE OF MAGNESIUM-INDIUM FERRITE SYNTHESIZED BY THE POLYMER-NITRATE METHOD. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6).
JATS XML
