Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis, structure and properties of composite proton-conducting membranes based on a Nafion-type perfluorinated copolymer with Zr1-xYxO2-0.5x nanoparticles

Abstract

Zr1-xYxO2-0.5x nanoparticles were introduced into the sulfonic acid form of the Nafion-type perfluorinated copolymer prior to membrane formation to improve its water retention, thermal stability, and proton conductivity. Since the conditions of nanoparticle formation can significantly influence their size, phase composition, morphology and surface chemistry, solution combustion and wet chemistry methods were used to obtain them. It was found that among all the approaches used to obtain nanoparticles based on zirconia, solvothermal synthesis is the most promising, since it provides a more uniform chemical composition, small crystallite size, a large specific surface area and a high degree of its hydrophobicity. The cooperative contribution of the above properties makes it possible to increase the proton conductivity of the Nafion-type perfluorinated copolymer and to raise the operating temperature of membranes based on it due to more efficient moisture retention.

About the Author

Alexander Nikolaevich Bugrov

Russian Federation


References

1. Ketpang K., Son B., Lee D., Shanmugam S. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions. Journal of Membrane Science, 2015, 488, 154–165. doi: 10.1016/j.memsci.2015.03.096

2. Mandanipour V., Bemani M., Parsatabar Z. Recent advances in Nafion-based composite membranes for fuel cells: Enhancing performance and durability. J. Chem. Rev., 2026, 8 (1), 40–85. doi: 10.48309/JCR.2026.528481.1466

3. O’Dea J.R., Economou N.J., Buratto S.K. Surface morphology of Nafion at hydrated and dehydrated conditions. Macromolecules, 2013, 46 (6), 2267–2274. doi: 10.1021/ma302399e

4. Zakil F.A., Kamarudin S.K., Basri S. Modified Nafion membranes for direct alcohol fuel cells: An overview. Renewable and Sustainable Energy Reviews, 2016, 65, 841–852. doi: 10.1016/j.rser.2016.07.040

5. Primachenko O.N., Marinenko E.A., Odinokov A.S., Kononova S.V., Kulvelis Y.V., Lebedev V.T. State of the art and prospects in the development of proton‐conducting perfluorinated membranes with short side chains: A review. Polymers for Advanced Technologies, 2020, 32 (4), 1386–1408. doi: 10.1002/pat.5191

6. Okonkwo P.C., Belgacem I.B., Emori W., Uzoma P.C. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International Journal of Hydrogen Energy, 2021, 46 (55), 27956–27973. doi: 10.1016/j.ijhydene.2021.06.032

7. Sigwadi R., Dhlamini M., Mokrani T., Ṋemavhola F. Wettability and mechanical strength of modified Nafion nanocomposite membrane for fuel cell. Digest Journal of Nanomaterials and Biostructures, 2017, 12 (4), 1137–1148

8. Karimi M.B., Mohammadi F., Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. International Journal of Hydrogen Energy, 2019, 44 (54), 28919–28938. doi: 10.1016/j.ijhydene.2019.09.096

9. Kraytsberg A., Ein-Eli Y. Review of advanced materials for proton exchange membrane fuel cells. Energy and Fuels, 2014, 28 (12), 7303–7330. doi: 10.1021/ef501977k

10. Rodriguez J., Rojas N., Sanchez-Molina M., Gonzalez Rodriguez L., Campana R., Rodriguez L. Hybrid membranes based in Nafion-metallic oxides: performance evaluations. Chemical Engineering Transactions, 2016, 47, 415–420. doi: 10.3303/CET1647070

11. Kim Y., Ketpang K., Jaritphun S., Park J.S., Shanmugam S. A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity. J. Mater. Chem. A, 2015, 3, 8148–8155. doi: 10.1039/C5TA00182J

12. Mohanraj V., Kim A.R., Shanmugam R., Yu Y., Yoo D.J. Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: The impact of filler on power density, chemical durability and hydrogen permeability of membrane. Composites Part B Engineering, 2021, 215 (21), 108828. doi: 10.1016/j.compositesb.2021.108828

13. Liu S., Yu J., Hao Y., Gao F., Zhou M., Zhao L. Impact of SiO2 modification on the performance of Nafion composite membrane. International Journal of Polymer Science, 2024, 2024 (1), Article ID 6309923, 10 pages. doi: 10.1155/2024/6309923

14. Shao Z.-G., Xu H., Li M., Hsing I-M. Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. Solid State Ionics, 2006, 177 (7), 779–785. doi: 10.1016/j.ssi.2005.12.035

15. Oh K., Kwon O., Son B., Lee D.H., Shanmugam S. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. Journal of Membrane Science, 2019, 583, 103–109. doi: 10.1016/j.memsci.2019.04.031

16. Navarra M.A., Abbati C., Scrosati B. Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. Journal of Power Sources, 2008, 183 (1), 109–113. doi: 10.1016/j.jpowsour.2008.04.033

17. Ng W.W., Thiam H.S., Pang Y.L., Chong K.C., Lai S.O. A state-of-art on the development of Nafion-based membrane for performance improvement in direct methanol fuel cells. Membranes, 2022, 12 (5), 506. doi: 10.3390/membranes12050506

18. Ye G., Hayden C.A., Goward G.R. Proton dynamics of Nafion and Nafion/SiO2 composites by solid state NMR and pulse field gradient NMR. Macromolecules, 2007, 40 (5), 1529–1537. doi: 10.1021/ma0621876

19. Saccà A., Carbone A., Passalacqua E., D’Epifanio A., Licoccia S., Traversa E., Sala E., Traini F., Ornelas R. Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). Journal of Power Sources, 2005, 152, 16–21. doi: 10.1016/j.jpowsour.2004.12.053

20. Jian-hua T., Peng-fei G., Zhi-yuan Z., Wen-hui L., Zhong-qiang S. Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. International Journal of Hydrogen Energy, 2008, 33 (20), 5686–5690 doi: 10.1016/j.ijhydene.2008.07.036

21. Yurova P.A., Malakhova V.R., Gerasimova E.V., Stenina I.A., Yaroslavtsev A.B. Nafion/surface modified ceria hybrid membranes for fuel cell application. Polymers, 2021, 13 (15), 2513. https://doi.org/10.3390/polym13152513

22. Voropaeva D., Merkel A., Yaroslavtsev A. Nafion/ZrO2 hybrid membranes solvated by organic carbonates. Transport and mechanical properties. Solid State Ionics, 2022, 386, 116055. doi: 10.1016/j.ssi.2022.116055

23. Gubanova G.N., Primachenko O.N., Bugrov A.N., Vylegzhanina M.E., Gofman I.V., Lavrentiev V.K., Ivankova E.N., Vlasova E.N., Kononova S.V. Structural and morphological features of perfluorosulfonic acid membranes doped with zirconium dioxide nanoparticles. Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques, 2024, 17 (S1), S391–S403. DOI: 10.1134/S1027451023070169

24. Devrim Y., Albostan A. Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane. International Journal of Hydrogen Energy, 2015, 40 (44), 15328–15335. doi: 10.1016/j.ijhydene.2015.02.078

25. Asghar M.R., Zhang W., Su H., Zhang J., Liu H., Xing L., Yan X., Xu Q. A review of proton exchange membranes modified with inorganic nanomaterials for fuel cells. Energy Adv., 2025, 4, 185–223. doi: 10.1039/D4YA00446A

26. Yaroslavtsev A.B., Stenina I.A. Current progress in membranes for fuel cells and reverse electrodialysis. Mendeleev Commun., 2021, 31 (4), 423–432.

27. Saccà A., Carbone A., Gatto I., Pedicini R., Freni A., Patti A., Passalacqua E. Composites Nafion-titania membranes for polymer electrolyte fuel cell (PEFC) applications at low relative humidity levels: Chemical physical properties and electrochemical performance, 2016, Polymer Testing, 56 (2), 10–18. doi: 10.1016/j.polymertesting.2016.09.015

28. Zhu L.-Y., Li Y.-C., Liu J., He J., Wang L.-Y., Lei J.-D. Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Petroleum Science, 2022, 19, 1371–1381. doi: 10.1016/j.petsci.2021.11.004

29. Sigwadi R., Mokrani T. Zirconia based/Nafion nanocomposite membranes for fuel cell applications. Proceedings of the 5 th International Conference on Nanotechnology: Fundamentals and Applications Prague, Czech Republic, August 11-13, 2014 Paper No. 151.

30. Almjasheva O.V. Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (5), 697–703. doi: 10.17586/2220-8054-2015-6-5-697-703

31. Yamamoto O., Arachi Y., Sakai H., Takeda Y., Imanishi N., Mizutani Y., Kawai M., Nakamura Y. Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics, 1998, 4 (5–6), 403–408.

32. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P., Khamova T.V., Kirilenko D.A., Kolesnikov I.E., Pankin D.V., Baigildin V.A., Licitra C. Influence of stabilizing ion content on the structure, photoluminescence and biological properties of Zr1–xEuxO2–0.5x nanoparticles. Crystals, 2020, 10, 1038. doi:10.3390/cryst10111038

33. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (6), 810–815.

34. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (2), 164–175.

35. Primachenko O.N., Odinokov A.S., Marinenko E.A., Kulvelis Yu.V., Barabanov V.G., Kononova S.V. Influence of sulfonyl fluoride monomers on the mechanism of emulsion copolymerization with the preparation of proton-conducting membrane precursors. Journal of Fluorine Chemistry, 2021, 244 (4), 109736. doi: 10.1016/j.jfluchem.2021.109736

36. Lutterotti L., Matthies S., Wenk H., Schultz A.S., Richardson J.W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys., 1997, 81, 594–600.

37. Kirilenko D.A., Dideykin A., Aleksenskiy A., Sitnikova A., Konnikov S., Vul’ A. One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Micron, 2015, 68, 23–26.

38. Igawa N., Ishii Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J. Am. Ceram. Soc., 2001, 84 (5), 1169–1171.

39. Martin U., Boysen H., Frey F. Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallographica Section B, 1993, 49 (3), 403–413.

40. Tailor S., Singh M., Doub A.V. Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications. Journal of Cluster Science, 2016, 27 (4), 1097–1107. doi: 10.1007/s10876-016-1014-y

41. Shuklina A.I., Smirnov A.V., Fedorov B.A., Kirillova S.A., Almjasheva O.V. Structure of nanoparticles in the ZrO2-Y2O3 system, as obtained under hydrothermal conditions Nanosystems: Physics, Chemistry, Mathematics., 2020, 11 (6), 729–738. doi: 10.17586/2220-8054-2020-11-6-729-738


Review

For citations:


Bugrov A.N. Synthesis, structure and properties of composite proton-conducting membranes based on a Nafion-type perfluorinated copolymer with Zr1-xYxO2-0.5x nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6).

Views: 11

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)