Ionic Conductivity in Nanopipettes: Experiment and Model
Abstract
This study presents original research on ion transport in glass nanopipettes (NPs) with apertures diameters in the range of (80-100) nm in a 1x PBS solution, combining experimental and theoretical approaches. We report the application of the Poisson-Nernst-Planck-Navier-Stokes (PNP-NS) model, which accounts for electroosmotic flow, electrophoretic effect and relaxation effect caused by interionic interactions. The model demonstrates good agreement with experimental voltampere (I(V)) characteristics. Fitting the calculated I(V) dependence to the experimentally measured one allows us to determine the sizes of the NPs apertures, which correlate with an error of 10% with direct measurements performed by a transmission electron microscope, while the ICR coefficients calculated from the model I(V) characteristics correlate with the ICR coefficients calculated from the experimental data with an error of 4%. The simulation also identifies unique spatial distributions of electrolyte velocities within the NP aperture, directly linked to electroosmotic flow and nanopipette geometry. These findings contribute novel insights into the behavior of ion transport at the nanoscale.
About the Author
Stanislav Yurievich LukashenkoRussian Federation
References
1. Yaul, M.; Bhatti, R.; Lawrence, S. Evaluating the process of polishing borosilicate glass capillaries used for fabrication of in-vitro fertilization(iVF) micro-pipettes. Biomed Microdevices. 2008, 10, 123–128.
2. Brown, K.T.; Flaming, D.G. Advanced micropipette techniques for cell physiology; Wiley: San Francisco, 1995.
3. Sakmann, B.; Neher, E. Single-channel recording; Plenum Press: New York, 1983.
4. Neher, E.; Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature. 1976, 260, 799–802.
5. Page, A.; Perry, D.; Unwin, P. R. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A. 2017, 473, 20160889.
6. Stuber, A., Schlotter, T., Hengsteler, J., Nakatsuka, N. Solid-State Nanopores for Biomolecular Analysis and Detection. In: Lisdat, F., Plumeré, N. (eds) Trends in Biosensing Research. Advances in Biochemical Engineering/Biotechnology, Springer, Cham, 2023, 1, 187.
7. Wang, X.F.; Duan, Y.F.; Zhu, Y.Q.; Liu, Z.J.; Wu. Y.C.; Liu, T.H.; Zhang, L.; Wei, J.F.; Liu, G.C. An Insulin-Modified pH-Responsive Nanopipette Based on Ion Current Rectification. Sensors. 2024, 24 (13), 4264.
8. Wang, Y.; Kececi, K.; Mirkin, M.V.; Mani, V.; Sardesai, N.; Rusling, J.F. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci. 2013, 4(2), 655-663.
9. Kececi, K.; Dinler, A.; Kaya, D. Review ─ Nanopipette Applications as Sensors, Electrodes, and Probes: A Study on Recent Developments. J. Electrochem. Soc. 2022, 169 (2), 027502.
10. Xu, C.; Yang, D.; Wang, Y.; Liu, R.; Wang, F.; Tian, Z.; Hu, K. Micro/nanoelectrode-based electrochemical methodology for single cell and organelle analysis. Nano Research 2024, 17 (1), 196– 206.
11. Sze, J.Y.Y., Ivanov, A.P., Cass, A.E.G. et al. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun. 2017, 8, 1552.
12. Nitz, H.; Kamp, J.; Fuchs, H. A combined scanning ion-conductance and shear-force microscope. Probe Microsc. 1998, 7(1), 187–200.
13. Terejanszky, P.; Makra, I.; Furjes, P.; Gyurcsanyi, R. E. Calibration-Less Sizing and Quantitation of Polymeric Nanoparticles and Viruses with Quartz Nanopipets Anal. Chem. 2014, 86, 4688– 4697.
14. Constantin, D.; Siwy, Z. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E. 2007, 76, 041202.
15. Chaparro, C.V.; Herrera, L.V.; Meléndez A.M.; Miranda D.A. Considerations on electrical impedance measurements of electrolyte solutions in a four-electrode cell. J. Phys. Conf. Series. 2016, 687, 012101.
16. Perry, D.; Momotenko, D.; Lazenby, R. A.; Kang, M.; Unwin, P. R. Characterization of Nanopipettes Anal. Chem. 2016, 88, 5523−5530.
17. Woermann, D. Analysis of non-ohmic electrical current–voltage characteristic of membranes carrying a single track-etched conical pore. Nucl. Instrum. Methods Phys. Res., Sect. B 2002, 194, 458-462.
18. Woermann, D. Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys. Chem. Chem. Phys. 2003, 5, 1853.
19. Cervera, J.; Schiedt, B.; Ramirez, P. A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 2005, 71, 35.
20. Apel, P.; Korchev, Y.E.; Siwy, Z.; Spohr, R.; Yoshida, M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res., Sect. B. 2001, 184, 337.
21. Tao, D., Jiang, L. & Jin, M. A Method of Preparation of Ag/AgCl Chloride Selective Electrode. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2018, 33, 767–771.
22. Lukashenko, S.Y. et al. Behavioral features of the approach curve of a scanning ion-conductance microscope. J. Surf. Investig. 2023, 17. 585–591.
23. Laurance, N. Self-diffusion of the chlorine ion in sodium chloride. Phys. Rev. 1960, 120, 57–62.
24. Girault, H. H. Analytical and Physical Electrochemistry. – New York: EPFL Press, 2004.
25. Amadu, M.; Miadonye, A. Determination of the point of zero charge PH of borosilicate glass surface using capillary imbibition method. Int. J. Chem. 2017, 9, 67–84.
26. Brown, K. T.; Flaming, D. G. Advanced micropipette techniques for cell physiology; John Wiley & Sons: New York, 1986.
27. Rheinlaender, J.; Schäffer, T. E. An Accurate Model for the Ion Current-Distance Behavior in Scanning Ion Conductance Microscopy Allows for Calibration of Pipet Tip Geometry and Tip-Sample Distance. Anal. Chem. 2017, 89, 11875– 11880.
28. Rabinowitz, J.; Edwards, M. A.; Whittier, E.; Jayant, K.; Shepard, K. L. Nanoscale Fluid Vortices and Nonlinear Electroosmotic Flow Drive Ion Current Rectification in the Presence of Concentration Gradients. J. Phys. Chem. A 2019, 123 (38), 8285– 8293.
Review
For citations:
Lukashenko S.Yu. Ionic Conductivity in Nanopipettes: Experiment and Model. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4).
JATS XML
