Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Heterodyne-based subcarrier wave quantum cryptography under the chromatic dispersion impact

https://doi.org/10.17586/2220-8054-2021-12-2-161-166

Abstract

In this paper, we investigate the effect of chromatic dispersion on a continuous variable quantum key distribution system with heterodyne detection, in which information is encoded in the sidebands of modulated laser radiation. We consider the system in which a balanced detector output is downconverted to an intermediate frequency and propose a non-standard methods of dispersion compensation using RF phase shifters.

About the Authors

R. K. Goncharov
St. Petersburg National Research ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



A. V. Zinovev
St. Petersburg National Research ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



F. D. Kiselev
St. Petersburg National Research ITMO University; Quanttelecom LLC
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101,

Vasilievsky island, 6 Line, 59, St. Petersburg, 199178



E. O. Samsonov
St. Petersburg National Research ITMO University; Quanttelecom LLC
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101,

Vasilievsky island, 6 Line, 59, St. Petersburg, 199178



References

1. Pirandola S., Andersen U.L., et al. Advances in quantum cryptography. Advances in Optics and Photonics, 2020, 12 (4), P. 1012–1236.

2. Bennett C., Brassard G. Quantum cryptography: public key distribution and coin tossing. Proceedings of “IEEE International Conference on Computers, Systems and Signal”, Bangalore, India, IEEE, 1984, P. 175–179.

3. Lo H.-K., Curty M., Tamaki K. Secure quantum key distribution. Nature Photonics, 2014, 8 (8), P. 595–604.

4. Ralph T.C. Continuous variable quantum cryptography. Physical Review A, 1999, 61 (1), 010303.

5. Grosshans F., Van Assche G., et al. Quantum key distribution using gaussian-modulated coherent states. Nature, 2003, 421 (6920), P. 238–241.

6. Hirano T., Yamanaka H., et al. Quantum cryptography using pulsed homodyne detection. Physical Review A, 2003, 68 (4), 042331.

7. Leverrier A., Grangier P. Continuous-variable quantum-key-distribution protocols with a non-gaussian modulation. Physical Review A, 2011, 83 (4), 042312.

8. Heid M., Lutkenhaus N. Efficiency of coherent-state quantum cryptography in the presence of loss: Influence of realistic error correction. ¨ Physical Review A, 2006, 73 (5), 052316.

9. Bradler K., Weedbrook C. Security proof of continuous-variable quantum key distribution using three coherent states. ´ Physical Review A, 2018, 97 (2), 022310.

10. Papanastasiou P., Lupo C. , Weedbrook C. , Pirandola S. Quantum key distribution with phase-encoded coherent states: Asymptotic security analysis in thermal-loss channels. Physical Review A, 2018, 98 (1), 012340.

11. Lin J., Upadhyaya T., Lutkenhaus N. Asymptotic security analysis of discrete-modulated continuous-variable quantum key distribution. ¨ Physical Review X, 2019, 9 (4), 041064.

12. Comandar L.C., Brunner H.H., et al. A flexible continuous-variable QKD system using off-the-shelf components. Quantum Information Science and Technology III, 2018, 10442, P. 37–43.

13. Wang H., Pi Y., et al. High-speed gaussian-modulated continuous-variable quantum key distribution with a local oscillator based on pilot-toneassisted phase compensation. Optics Express, 2020, 28 (22), P. 32882–32893.

14. Fossier S., Diamanti E., et al. Field test of a continuous-variable quantum key distribution prototype. New Journal of Physics, 2009, 11 (4), 045023.

15. Gleim A.V., Egorov V.I., et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics Express, 2016, 24 (3), P. 2619–2619.

16. Miroshnichenko G.P., Kozubov A.V., et al. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Optics Express, 2018, 26 (9), P. 11292–11308.

17. Kynev S.M., Chistyakov V.V., et al. Free-space subcarrier wave quantum communication. Journal of Physics: Conference Series, 2017, 917, 052003.

18. Merolla J.-M., Mazurenko Y., et al. Phase-modulation transmission system for quantum cryptography. Optics Letters, 1999, 24 (2), P. 104–106.

19. Chistiakov V., Kozubov A., et al. Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states. Optics Express, 2019, 27 (25), P. 36551–36561.

20. Samsonov E., Goncharov R., et al. Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis. Scientific Reports, 2020, 10 (1), P. 1–9.

21. Miroshnichenko G.P., Kiselev A.D., Trifanov A.I., Gleim A.V. Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. Journal of the Optical Society of America B, 2017, 34 (6), P. 1177–1190.

22. Capmany J., Fernandez-Pousa C.R. Quantum model for electro-optical phase modulation. ´ Journal of the Optical Society of America B, 2010, 27 (6), A119–A129.

23. Kumar P., Prabhakar A. Evolution of quantum states in an electro-optic phase modulator. IEEE journal of quantum electronics, 2008, 45 (2), P. 149–156.

24. Samsonov E., Goncharov R., et al. Coherent detection schemes for subcarrier wave continuous variable quantum key distribution. ArXiv:2006.16543, 2020.

25. Kiselev F., Samsonov E., et al. Analysis of the chromatic dispersion effect on the subcarrier wave QKD system. Optics Express, 2020, 28 (19), P. 28696–28712.

26. Kleis S., Rueckmann M., Schaeffer C.G. Continuous-variable quantum key distribution with a real local oscillator and without auxiliary signals. ArXiv:1908.03625, 2019.

27. Huang D., Lin D.,et al. Continuous-variable quantum key distribution with 1 Mbps secure key rate. Optics Express, 2015, 23 (13), P. 17511– 17519.

28. Agrawal G.P. Fiber-optic communication systems. John Wiley & Sons, Hoboken, 2012, 626 p.

29. Horowitz P., Hill W. The art of electronics. Cambridge University Press, Cambridge, 1989, 1220 p.

30. Xinyi T. Broadband phase shifter design for phased array radar systems. PhD Thesis, National University of Singapore, 2011.


Review

For citations:


Goncharov R.K., Zinovev A.V., Kiselev F.D., Samsonov E.O. Heterodyne-based subcarrier wave quantum cryptography under the chromatic dispersion impact. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):161-166. https://doi.org/10.17586/2220-8054-2021-12-2-161-166

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)