MXene based electrocatalysts for efficient water splitting
Abstract
In this study, we modified the nickel foam with Ti3C2Tx (MXene), graphene oxide (GO) and carbon black (CB) towards enhanced electrical conductivity and active surface area for efficient water splitting. The MXene/NF electrode, fabricated via selective etching and an immersion method, features high electrical conductivity, abundant active sites, and excellent mechanical stability, making it an efficient catalyst for both HER and OER. More importantly, after further integrating GO and CB with MXene, the MXene-GO-CB/NF demonstrates low overpotential of 290 mV for OER and 200 mV for HER at 10 mA/cm2. Based on electrochemical impedance spectroscopy (EIS) and electrochemically active surface area (ECSA) analysis, it is revealed that MXene/NF electrode exhibit excellent electrical conductivity with low charge transfer resistance of 2 Ω for OER and 0.8 Ω for HER, and the ECSA values of 518 cm2 (OER) and 729 cm2 (HER), ensuring high active surface areas and active sites for efficient hydrogen and oxygen evolution reactions. The thermodynamic efficiency calculations show 82% for MXene/NF and 88% for MXene-GO-CB/NF, demonstrating their potential for energy-efficient hydrogen production. The presence of GO enhances electrode stability, resulting in only 1.48% degradation over 14 hours, compared to 4.55% degradation without GO. In this work, we systematically demonstrate the unique integration of the MXene, GO and CB on NF with efficient charge transfer, robust structural integrity and excellent electrochemical durability, paving new pathway for pushing forward for electrocatalytic water splitting.
About the Authors
Javlonbek MamanazirovUzbekistan
Shavkat Mamatkulov
Uzbekistan
Maxfuza Jumayeva
Uzbekistan
Khakimjan Butanov
Uzbekistan
Wen He
China
Jingxiang Low
China
Odilhuja Parpiev
Uzbekistan
Olim Ruzimuradov
Uzbekistan
References
1. Sampene, A. K.; Li, C.; Wiredu, J. An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance. Energy Policy 2024, 187, 114025. https://doi.org/10.1016/j.enpol.2024.114025.
2. Ehteshami, S. M. M.; Chan, S. H. The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges. Energy Policy 2014, 73, 103–109. https://doi.org/10.1016/j.enpol.2014.04.046.
3. Anderson, D.; Leach, M. Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energy Policy 2003, 32 (14), 1603–1614. https://doi.org/10.1016/s0301-4215(03)00131-9.
4. Luo, Z.; Hu, Y.; Xu, H.; Gao, D.; Li, W. Cost-Economic analysis of hydrogen for China’s fuel cell transportation field. Energies 2020, 13 (24), 6522. https://doi.org/10.3390/en13246522.
5. Olivier, P.; Bourasseau, C.; Bouamama, Pr. B. Low-temperature electrolysis system modelling: A review. Renewable and Sustainable Energy Reviews 2017, 78, 280–300. https://doi.org/10.1016/j.rser.2017.03.099.
6. Karthikeyan, S. C.; Sidra, S.; Ramakrishnan, S.; Kim, D. H.; Sagayaraj, P. J.; Sekar, K.; Yoo, D. J. Heterostructured NiO/IrO2 synergistic pair as durable trifunctional electrocatalysts towards water splitting and rechargeable zinc-air batteries: An experimental and theoretical study. Applied Catalysis B Environment and Energy 2024, 355, 124196. https://doi.org/10.1016/j.apcatb.2024.124196.
7. Qadeer, M. A., Zhang, X., Farid, M. A., Tanveer, M., Yan, Y., Du, S., Huang, Z., Tahir, M., & Zou, J. (2024). A review on fundamentals for designing hydrogen evolution electrocatalyst. Journal of Power Sources, 613, 234856. https://doi.org/10.1016/j.jpowsour.2024.234856
8. Tang, J.; Xu, X.; Tang, T.; Zhong, Y.; Shao, Z. Perovskite‐Based electrocatalysts for Cost‐Effective Ultrahigh‐Current‐Density water splitting in anion exchange membrane electrolyzer cell. Small Methods 2022, 6 (11). https://doi.org/10.1002/smtd.202201099.
9. 9. Amani, A. M.; Tayebi, L.; Vafa, E.; Jahanbin, A.; Abbasi, M.; Vaez, A.; Kamyab, H.; Chelliapan, S. Innovation applications of MXenes in biomedicine. Materials Today Communications 2024, 40, 109929. https://doi.org/10.1016/j.mtcomm.2024.109929.
10. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2; 2023. https://doi.org/10.1201/9781003306511-4.
11. Fu, L.; Xia, W. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications. Advanced Engineering Materials 2020, 23 (4). https://doi.org/10.1002/adem.202001191.
12. Haemers, J.; Gusmão, R.; Sofer, Z. Synthesis protocols of the most common layered carbide and nitride MAX phases. Small Methods 2020, 4 (3). https://doi.org/10.1002/smtd.201900780.
13. Sokol, M.; Natu, V.; Kota, S.; Barsoum, M. W. On the Chemical Diversity of the MAX Phases. Trends in Chemistry 2019, 1 (2), 210–223. https://doi.org/10.1016/j.trechm.2019.02.016.
14. Barsoum, M. W.; Radovic, M. Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research 2011, 41 (1), 195–227. https://doi.org/10.1146/annurev-matsci-062910-100448.
15. 15. Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q.; Xu, B. Advances in the synthesis of 2D MXenes. Advanced Materials 2021, 33 (39). https://doi.org/10.1002/adma.202103148.
16. Kajiyama, S.; Szabova, L.; Iinuma, H.; Sugahara, A.; Gotoh, K.; Sodeyama, K.; Tateyama, Y.; Okubo, M.; Yamada, A. Enhanced Li‐Ion accessibility in MXENE titanium carbide by steric chloride termination. Advanced Energy Materials 2017, 7 (9). https://doi.org/10.1002/aenm.201601873.
17. 17. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two‐Dimensional nanocrystals produced by exfoliation of TI3ALC2. Advanced Materials 2011, 23 (37), 4248–4253. https://doi.org/10.1002/adma.201102306.
18. 18. Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. Fluoride‐Free synthesis of Two‐Dimensional titanium carbide (MXENE) using a binary aqueous system. Angewandte Chemie International Edition 2018, 57 (47), 15491–15495. https://doi.org/10.1002/anie.201809662.
19. Ni, Q.-Y.; He, X.-F.; Zhou, J.-L.; Yang, Y.-Q.; Zeng, Z.-F.; Mao, P.-F.; Luo, Y.-H.; Xu, J.-M.; Jiang, B.; Wu, Q.; Wang, B.; Qin, Y.-Q.; Gong, L.-X.; Tang, L.-C.; Li, S.-N. Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring. Journal of Material Science and Technology 2024, 191, 181–191. https://doi.org/10.1016/j.jmst.2023.12.048.
20. Jiang, M.; Wang, D.; Kim, Y.; Duan, C.; Talapin, D. V.; Zhou, C. Evolution of Surface Chemistry in Two‐Dimensional MXEnES: From mixed to Tunable Uniform Terminations. Angewandte Chemie 2024, 136 (37). https://doi.org/10.1002/ange.202409480.
21. Cao, Fangcheng, et al. “Recent Advances in Oxidation Stable Chemistry of 2D MXenes.” Advanced Materials, vol. 34, no. 13, 17 Feb. 2022, p. 2107554, https://doi.org/10.1002/adma.202107554.
22. 22. Soomro, Razium A, et al. “Progression in the Oxidation Stability of MXenes.” Nano-Micro Letters, vol. 15, no. 1, 18 Apr. 2023, https://doi.org/10.1007/s40820-023-01069-7.
23. 23. Iqbal, Aamir, et al. “Improving Oxidation Stability of 2D MXenes: Synthesis, Storage Media, and Conditions.” Nano Convergence, vol. 8, no. 1, 16 Mar. 2021, https://doi.org/10.1186/s40580-021-00259-6. Accessed 10 Apr. 2022.
24. 24. Gao, X., Du, X., Mathis, T.S. et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat Commun 11, 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3.
25. Meng, Weisong, et al. “Alkalized MXene/Carbon Nanotube Composite for Stable Na Metal Anodes.” RSC Advances, vol. 14, no. 17, 1 Jan. 2024, pp. 12030–12037, https://doi.org/10.1039/d4ra01572j.
26. Iravani, Siavash, et al. “Advancements in MXenes and Mechanochemistry: Exploring New Horizons and Future Applications.” Materials Advances, vol. 5, no. 21, 2024, pp. 8404–8418, https://doi.org/10.1039/d4ma00775a.
27. He, Lei, et al. “Advances and Challenges in MXene-Based Electrocatalysts: Unlocking the Potential for Sustainable Energy Conversion.” Materials Horizons, vol. 11, no. 18, 2024, pp. 4239–4255, https://doi.org/10.1039/d4mh00845f.
28. Zhang, Qingxiao, et al. “Synthesis and Design Strategies of MXene Used as Catalysts.” ChemCatChem, vol. 16, no. 22, 13 Aug. 2024, https://doi.org/10.1002/cctc.202400917.
29. Zhou, Tianzhu, et al. “Super-Tough MXene-Functionalized Graphene Sheets.” Nature Communications, vol. 11, no. 1, 29 Apr. 2020, p. 2077, www.nature.com/articles/s41467-020-15991-6, https://doi.org/10.1038/s41467-020-15991-6. Accessed 27 June 2022.
30. 30. Li, Xiao‐Peng, et al. “Reshapable MXene/Graphene Oxide/Polyaniline Plastic Hybrids with Patternable Surfaces for Highly Efficient Solar‐Driven Water Purification.” Advanced Functional Materials, vol. 32, no. 15, 22 Dec. 2021, https://doi.org/10.1002/adfm.202110636. Accessed 15 Apr. 2025.
31. 31. Gong, Kaili, et al. “MXene as Emerging Nanofillers for High-Performance Polymer Composites: A Review.” Composites Part B: Engineering, vol. 217, July 2021, p. 108867, https://doi.org/10.1016/j.compositesb.2021.108867. Accessed 27 Oct. 2021.
32. 32. Iravani, Siavash, et al. “Synergistic Advancements: Exploring MXene/Graphene Oxide and MXene/Reduced Graphene Oxide Composites for Next-Generation Applications.” FlatChem, vol. 48, Nov. 2024, p. 100759, https://doi.org/10.1016/j.flatc.2024.100759.
33. 33. Liu, Qi, et al. “Improved Anti-Corrosion Behaviour of an Inorganic Passive Film on Hot-Dip Galvanised Steel by Modified Graphene Oxide Incorporation.” Corrosion Science, vol. 174, Sept. 2020, p. 108846, https://doi.org/10.1016/j.corsci.2020.108846.
34. 34. Yin, Yiming, et al. “Distinct Ion Transport Behavior between Graphene Oxide and UV-Irradiated Reduced Graphene Oxide Membranes.” Chemical Engineering Journal, vol. 493, Aug. 2024, p. 152304, https://doi.org/10.1016/j.cej.2024.152304.
35. 35. Amir Reza Salasel, et al. “Role of Graphene Concentration on Electrochemical and Tribological Properties of Graphene-Poly(Methyl Methacrylate) Composite Coatings.” Journal of Composite Materials, vol. 57, no. 24, 14 Aug. 2023, pp. 3877–3896, https://doi.org/10.1177/00219983231194901.
36. 36. Su, Liwei, et al. “N-Doped Carbon Nanolayer Modified Nickel Foam: A Novel Substrate for Supercapacitors.” Applied Surface Science, vol. 546, 20 Dec. 2020, pp. 148754–148754, https://doi.org/10.1016/j.apsusc.2020.148754.
37. 37. Zhang, Jiaoyuan, et al. “Construction of ZnO@Co3O4-Loaded Nickel Foam with Abrasion Resistance and Chemical Stability for Oil/Water Separation.” Surface and Coatings Technology, vol. 357, Jan. 2019, pp. 244–251, https://doi.org/10.1016/j.surfcoat.2018.09.042.
38. Das, Manisha, et al. “Three-Dimensional Nickel and Copper-Based Foam-In-Foam Architecture as an Electrode for Efficient Water Electrolysis.” Catalysis Today, vol. 424, 1 Dec. 2023, p. 113836, www.sciencedirect.com/science/article/abs/pii/S0920586122002772#preview-section-abstract, https://doi.org/10.1016/j.cattod.2022.07.004.
39. Ao, Guang-Hong, et al. “Construction of Hierarchical Porous Architecture on Ni Foam for Efficient Oxygen Evolution Reaction Electrode.” Frontiers in Materials, vol. 8, 8 Oct. 2021, https://doi.org/10.3389/fmats.2021.726270.
40. 40. Yu, K.; Zhang, J.; Hu, Y.; Wang, L.; Zhang, X.; Zhao, B. Ni Doped Co-MOF-74 Synergized with 2D Ti3C2Tx MXene as an Efficient Electrocatalyst for Overall Water-Splitting. Catalysts 2024, 14 (3), 184. https://doi.org/10.3390/catal14030184.
41. Shi, X.; Yu, Z.; Liu, Z.; Cao, N.; Zhu, L.; Liu, Y.; Zhao, K.; Shi, T.; Yin, L.; Fan, Z. Scalable, High‐Yield Monolayer MXene Preparation from Multilayer MXene for Many Applications. Angewandte Chemie 2024. https://doi.org/10.1002/ange.202418420.
42. Jiang, S.; Lu, L.; Song, Y. Recent Advances of Flexible MXene and its Composites for Supercapacitors. Chemistry - a European Journal 2024, 30 (24). https://doi.org/10.1002/chem.202304036.
43. . Liu, X.; Albloushi, M.; Galvin, M.; Schroeder, C. W.; Wu, Y.; Li, W. Paired Alkaline Electrolyzer with Furfural Oxidation and Hydrogen Evolution over Noble Metal-Free NiFe/Ni and Co/MXene Catalysts. Green Chemistry 2024. https://doi.org/10.1039/d4gc04447a.
44. Zhang, Wei, et al. “Effect of Carbon Black Concentration on Electrical Conductivity of Epoxy Resin–Carbon Black–Silica Nanocomposites.” Journal of Materials Science, vol. 42, no. 18, Sept. 2007, pp. 7861–7865, https://doi.org/10.1007/s10853-007-1670-2.
45. 45. Abdullah, N.; Ishak, N. A. I. M.; Tan, K. H.; Zaed, M. A.; Saidur, R.; Pandey, A. K. Investigating the impact of various etching agents on Ti3C2Tx MXene synthesis for electrochemical energy conversion. FlatChem 2024, 47, 100730. https://doi.org/10.1016/j.flatc.2024.100730.
46. Verger, L.; Xu, C.; Natu, V.; Cheng, H.-M.; Ren, W.; Barsoum, M. W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science 2019, 23 (3), 149–163. https://doi.org/10.1016/j.cossms.2019.02.001.
47. Miao, B.; Bashir, T.; Zhang, H.; Ali, T.; Raza, S.; He, D.; Liu, Y.; Bai, J. Impact of various 2D MXene surface terminating groups in energy conversion. Renewable and Sustainable Energy Reviews 2024, 199, 114506. https://doi.org/10.1016/j.rser.2024.114506.
48. Singh, Iqbal, et al. “Modification of the Properties of Titanium Carbide MXene by Ag Doping via Ion Implantation for Quantum Dot-Sensitized Solar Cell Applications.” Journal of Electronic Materials, vol. 53, no. 9, 20 Apr. 2024, pp. 5007–5017, https://doi.org/10.1007/s11664-024-11063-3.
49. González, A. “1.5 X-Ray Crystallography: Data Collection Strategies and Resources.” Comprehensive Biophysics, 2012, pp. 64–91, https://doi.org/10.1016/b978-0-12-374920-8.00106-5.
50. Mamanazirov, J. I., Ruzimuradov, O. N., & Mamatkulov, Sh. I. THE IMPACT OF 2D MXENE ON ALUMINA BASED INKS FOR DIRECT INK WRITING. Ceramics International, 2025, 51(12PA), 15725–15732. https://doi.org/10.1016/j.ceramint.2025.01.409
51. Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O.; Koo, C. M. Electromagnetic shielding of monolayer MXENE assemblies. Advanced Materials 2020, 32 (9). https://doi.org/10.1002/adma.201906769.
52. Murthy, A. P.; Theerthagiri, J.; Madhavan, J. Insights on Tafel constant in the analysis of hydrogen evolution reaction. The Journal of Physical Chemistry C 2018, 122 (42), 23943–23949. https://doi.org/10.1021/acs.jpcc.8b07763.
53. Thomas, J. G. N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Transactions of the Faraday Society 1961, 57, 1603. https://doi.org/10.1039/tf9615701603.
54. Rauf, S. B. Thermodynamics made simple for energy engineers: & Engineers in Other Disciplines; CRC Press, 2023.
55. Granozzi, G.; Alonso-Vante, N. Electrochemical Surface Science: Basics and applications; MDPI, 2019.
56. Balčiūnaitė, A.; Upadhyay, K. K.; Radinović, K.; Santos, D. M. F.; Montemor, M. F.; Šljukić, B. Steps towards highly-efficient water splitting and oxygen reduction using nanostructured β-Ni(OH)2. RSC Advances 2022, 12 (16), 10020–10028. https://doi.org/10.1039/d2ra00914e.
57. Ibupoto, Z. H.; Tahira, A.; Tang, P.; Liu, X.; Morante, J. R.; Fahlman, M.; Arbiol, J.; Vagin, M.; Vomiero, A. MOSX@NIO Composite Nanostructures: an advanced nonprecious catalyst for hydrogen evolution reaction in alkaline media. Advanced Functional Materials 2019, 29 (7). https://doi.org/10.1002/adfm.201807562.
58. Mishra, R. K.; Kumar, V.; Choi, G. J.; Ryu, J. W.; Mane, S. M.; Shin, J. C.; Gwag, J. S. Hexagonal NiO nanosheets on Ni-foam as an electrocatalyst for high-performance water splitting application. Materials Letters 2022, 324, 132740. https://doi.org/10.1016/j.matlet.2022.132740.
59. Krishnamurthy, P.; Maiyalagan, T.; Panomsuwan, G.; Jiang, Z.; Rahaman, M. Iron-Doped nickel hydroxide nanosheets as efficient electrocatalysts in electrochemical water splitting. Catalysts 2023, 13 (7), 1095. https://doi.org/10.3390/catal13071095.
60. Qiu, Z.; Ma, Y.; Niklasson, G. A.; Edvinsson, T. An electrochemical impedance study of alkaline water splitting using FE doped NIO nanosheets. Physchem 2021, 1 (1), 69–81. https://doi.org/10.3390/physchem1010005.
61. Bao, W.; You, J.; Zhao, Y.; Wang, L.; Yao, R. Enhanced oxygen evolution reaction activity of Ni(OH)2 nanosheets via the modified effect of sulfur. Journal of Chemical Sciences 2022, 134 (3). https://doi.org/10.1007/s12039-022-02072-y.
Review
For citations:
Mamanazirov J., Mamatkulov Sh., Jumayeva M., Butanov Kh., He W., Low J., Parpiev O., Ruzimuradov O. MXene based electrocatalysts for efficient water splitting. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6).
JATS XML
