M-polynomial and related degree-based topological indices of the third type of hex-derived network
https://doi.org/10.17586/2220-8054-2020-11-3-267-274
Abstract
In the field of chemical graph theory, a topological index is a real number which is correlated with the various physical properties, biological activities and chemical reactivities of molecular graphs. In recent trends, M-polynomials are used to compute numerous degree-based topological indices. Hex-derived networks have a wide range of applications in pharmaceutical sciences, electronics and communication networks. In this paper, we would like to determine a general form of M-polynomial for the third type of hex-derived network of dimension n and hence generate the related degree-based topological indices. Additionally, we plot the M-polynomial and all the related degree-based topological indices for several n.
About the Authors
Shibsankar DasIndia
Varanasi-221005, Uttar Pradesh
Shikha Rai
India
Varanasi-221005, Uttar Pradesh
References
1. West D.B. Introduction to Graph Theory. 2nd Edition, Prentice Hall., 2000.
2. Hammack R., Imrich W., Klavzar S.ˇ Handbook of Product Graphs. 2nd Edition, CRC Press, Inc., Boca Raton, FL, USA, 2011.
3. Estrada E. Randic index, irregularity and complex biomolecular networks.´ Acta Chimica Slovenica, 2010, 57, P. 597–603.
4. Garc´ıa-Domenech R., Galvez J., de Juli´ an-Ortiz J.V., Pogliani L. Some new trends in chemical graph theory.´ Chemical Reviews, 2008, 108(3), P. 1127–1169.
5. Balaban A.T. Chemical applications of graph theory. Mathematical Chemistry. Academic Press., 1976.
6. Trinajstic N.´ Chemical Graph Theory. Mathematical Chemistry Series. 2nd edition, CRC Press., 1992.
7. Gross J.L., Yellen J., Zhang P. Handbook of Graph Theory. Discrete Mathematics and Its Applications. 2nd edition, Chapman and Hall/CRC., 2013.
8. Gutman I. Degree-based topological indices. Croatica Chemica Acta, 2013, 86(4), P. 351–361.
9. Balaban A.T. Highly discriminating distance-based topological index. Chemical Physics Letters, 1982, 89(5), P. 399–404.
10. Pattabiraman K. Degree and distance based topological indices of graphs. Electronic Notes in Discrete Mathematics, 2017, 63, P. 145–159.
11. Khadikar P.V., Deshpande N.V., Kale P.P., Dobrynin A., Gutman I., Domotor G. The szeged index and an analogy with the wiener index. Journal of Chemical Information and Computer Sciences, 1995, 35(3), P. 547–550.
12. Gutman I. The acyclic polynomial of a graph. Publications de I’Institut Mathematique´ , 1977, 22(36) (42), P. 63–69.
13. Farrell E.J. An introduction to matching polynomials. Journal of Combinatorial Theory, Series B, 1979, 27(1), P. 75–86.
14. Zhang H., Zhang F. The clar covering polynomial of hexagonal systems I. Discrete Applied Mathematics, 1996, 69(1-2), P. 147–167.
15. Gutman I. Some relations between distance-based polynomials of trees. Bulletin (Academie serbe des sciences et des arts. Classe des sciences´ mathematiques et naturelles. Sciences math´ ematiques´ ), 2005, 30, P. 1–7.
16. Kauffman L.H. A tutte polynomial for signed graphs. Discrete Applied Mathematics, 1989, 25(1-2), P. 105–127.
17. Hosoya H. On some counting polynomials in chemistry. Discrete Applied Mathematics, 1988, 19(1-3), P. 239–257.
18. Wiener H. Structural determination of paraffin boiling points. Journal of the American Chemical Society, 1947, 69(1), P. 17–20.
19. Deutsch E., Klavzar S. M-polynomial and degree-based topological indices.ˇ Iranian Journal of Mathematical Chemistry, 2015, 6(2), P. 93– 102.
20. Munir M., Nazeer W., Rafique S., Kang S.M. M-polynomial and degree-based topological indices of polyhex nanotubes. Symmetry, 2016, 8(12), P. 149.
21. Munir M., Nazeer W., Rafique S., Kang S.M. M-polynomial and related topological indices of nanostar dendrimers. Symmetry, 2016, 8(9), P. 97.
22. Munir M., Nazeer W., Nizami A.R., Rafique S., Kang S.M. M-polynomial and topological indices of titania nanotubes. Symmetry, 2016, 8(1-9), P. 117.
23. Kwun Y.C., Munir M., Nazeer W., Rafique S., Kang S.M. M-polynomials and topological indices of V-phenylenic nanotubes and nanotori. Scientific Reports, P. 2017, 7(1), P. 1–9.
24. Kang S.M., Nazeer W., Zahid M.A., Nizami A.R., Aslam A., Munir M. M-polynomials and topological indices of hex-derived networks. Open Physics, 2018, 16(1), P. 394–403.
25. Deng H., Yang J., Xia F. A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes. Computers & Mathematics with Applications, 2011, 61(10), P. 3017–3023.
26. Gutman I., Trinajstic N. Graph theory and molecular orbitals. Total´ π-electron energy of alternant hydrocarbons. Chemical Physics Letters, 1972, 17(4), P. 535–538.
27. Miliceviˇ c A., Nikoli´ c S., Trinajsti´ c N. On reformulated zagreb indices.´ Molecular Diversity, 2004, 8, P. 393–399.
28. Bollobas B., Erd´ os P. Graphs of extremal weights.˝ Ars Combinatoria, 1998, 50, P. 225–233.
29. Amic D., Be´ slo D., Luˇ ciˇ c B., Nikoli´ c S., Trinajsti´ c N. The vertex-connectivity index revisited.´ Journal of Chemical Information and Computer Sciences, 1998, 38(5), P. 819–822.
30. Vukiceviˇ c D., Ga´ sperov M. Bond additive modeling 1. adriatic indices.ˇ Croatica Chemica Acta, 2010, 83(3), P. 243–260.
31. Favaron O., Maheo M., Sacl´ e J.-F. Some eigenvalue properties in graphs (conjectures of graffiti-II).´ Discrete Mathematics, 1993, 111(1-3), P. 197–220.
32. Furtula B., Graovac A., Vukiceviˇ c D. Augmented zagreb index.´ Journal of Mathematical Chemistry, 2010, 48(2), P. 370–380.
33. Randic M. Characterization of molecular branching.´ Journal of the American Chemical Society, 1975, 97(23), P. 6609–6615.
34. Sedlar J., Stevanovic D., Vasilyev A. On the inverse sum indeg index.´ Discrete Applied Mathematics, 2015, 184, P. 202–212.
35. Nocetti F.G., Stojmenovic I., Zhang J. Addressing and routing in hexagonal networks with applications for tracking mobile users and connection rerouting in cellular networks. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(9), P. 963–971.
36. Manuel P., Bharati R., Rajasingh I., Monica M C. On minimum metric dimension of honeycomb networks. Journal of Discrete Algorithms, 2008, 6(1), P. 20–27.
37. Raj F.S., George A. On the metric dimension of HDN 3 and PHDN 3. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 2017, P. 1333–1336.
38. Wei C.-C., Ali H., Binyamin M.A., Naeem M.N., Liu J.-B. Computing degree based topological properties of third type of hex-derived networks. Mathematics, 2019, 7(4), P. 368.
Review
For citations:
Das Sh., Rai Sh. M-polynomial and related degree-based topological indices of the third type of hex-derived network. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(3):267–274. https://doi.org/10.17586/2220-8054-2020-11-3-267-274