Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Mechanisms of energy-efficient magnetization switching in a bistable nanowire

https://doi.org/10.17586/2220-8054-2020-11-3-294-300

Abstract

Theoretical calculations of optimal control paths minimizing the energy cost of the magnetization reversal in 1D magnetic nanowires are presented. The energy-efficient reversal mechanism is studied as a function of the nanowire length and Gilbert damping parameter. For short nanowires, the optimal reversal mechanism corresponds to a uniform rotation of magnetization. If the length of the wire exceeds a certain critical length defined by the material parameters, switching time and damping, a standing spin wave emerges during magnetization switching. Comparison between the calculated optimal control paths and minimum energy paths reveals that realization of high energy efficiency of switching does not necessarily translate to the minimization of the energy barrier between the target magnetic states.

About the Authors

M.H.A. Badarneh
Science Institute, University of Iceland
Iceland

107 Reykjav´ık



G. J. Kwiatkowsk
Science Institute, University of Iceland
Iceland

107 Reykjav´ık



P. F. Bessarab
Science Institute, University of Iceland; ITMO University; Peter Grunberg Institute and Institute for Advanced Simulation
Russian Federation

107 Reykjav´ık

197101 St. Petersburg, Russia

Forschungszentrum Julich, 52425 Julich, Germany



References

1. Stano M., Fruchart O. Magnetic nanowires and nanotubes. Inˇ Handbook of Magnetic Materials, vol. 27, ed. Bruck E. Elsevier, Amsterdam.,¨ 2018, P. 155–267.

2. Parkin S.S.P., Hayashi M. Thomas L. Magnetic domain-wall racetrack memory. Science, 2008, 320(5873), P. 190–194.

3. Hinzke D., Nowak U. Magnetization switching in nanowires: Monte Carlo study with fast Fourier transformation for dipolar fields. Journal of Magnetism and Magnetic Materials, 2000, 221, P. 365–372.

4. Hertel R., Kirschner J. Magnetization reversal dynamics in nickel nanowires. Physica B, 2004, 343, P. 206–210.

5. Allende S., Altbir D., Salcedo E., Bahiana M., Sinnecker J.P. Propagation of transverse domain walls in homogeneous magnetic nanowires. Journal of Applied Physics, 2008, 104, P. 013907.

6. Ivanov Yu.P., Vazquez M., Chubykalo-Fesenko O. Magnetic reversal modes in cylindrical nanowires.´ Journal of Physics D: Applied Physics, 2013, 46, P. 485001.

7. Goussev A., Lund R.G., Robbins J.M., Slastikov V., Sonnenberg C. Domain wall motion in magnetic nanowires: an asymptotic approach. Proceedings of the Royal Society A, 2013, 469, P. 20130308.

8. Sultan M.S., Atkinson D. Aspect-ratio dependence of magnetization reversal in cylindrical ferromagnetic nanowires. Materials Research Express, 2016, 3, P. 056104.

9. Kuncser A., Antohe S., Kuncser, V. A general perspective on the magnetization reversal in cylindrical soft magnetic nanowires with dominant shape anisotropy. Journal of Magnetism and Magnetic Materials, 2017, 423, P. 34–38.

10. Endo Y., Fujimoto H., Kumano S., Matsumura Y., Sasaki I., Kawamura Y., Yamamoto M., Nakatani R. Study on the magnetization reversal process in a magnetic nanowire and a magnetic dot observed by magnetic field sweeping magnetic force microscopy measurements. Journal of Applied Physics, 2008, 103, P. 07D918.

11. Lav´ın R., Denardin J.C., Escrig J., Altbir D., Cortes A., G´ omez H. Angular dependence of magnetic properties in Ni nanowire arrays.´ Journal of Applied Physics, 2009, 106, P. 103903.

12. Vivas L.G., Vazquez M., Escrig J., Allende S., Altbir D., Leitao D.C., Araujo J.P. Magnetic anisotropy in CoNi nanowire arrays: Analytical calculations and experiments. Physical Review B, 2012, 85, P. 035439.

13. Garc´ıa J., Prida V.M., Vivas L.G., Hernando B., Barriga-Castro E.D., Mendoza-Resendez R., Luna C., Escrig J., V´ azquez M. Magnetization´ reversal dependence on effective magnetic anisotropy in electroplated Co-Cu nanowire arrays. Journal of Materials Chemistry C, 2015, 3, P. 4688.

14. Sultan M.S. Angular dependence of switching behaviour in template released isolated NiFe nanowires. Physics Letters A, 2017, 381, P. 3896– 3903.

15. Barros N., Rassam M., Jirari H., Kachkachi H. Optimal switching of a nanomagnet assisted by microwaves. Physical Review B, 2011, 83, P. 144418.

16. Kwiatkowski G.J., Badarneh M.H.A., Berkov D.V., Bessarab P.F. Optimal control of magnetization reversal in a monodomain particle by means of applied magnetic field, 2020. arXiv: https://arxiv.org/abs/2004.02146.

17. Nocedal J., Wright S.J. Numerical Optimization (2nd ed.). Springer, New York, 2006.

18. Ivanov A.V., Uzdin V.M., Jonsson H. Fast and robust algorithm for the energy minimization of spin systems applied in an analysis of high´ temperature spin configurations in terms of skyrmion density, 2019. arXiv: https://arxiv.org/abs/1904.02669.

19. Ivanov A.V., Dagbjartsson D., Tranchida J., Uzdin V.M., Jonsson H. Efficient optimization method for finding minimum energy paths of´ magnetic transitions. Journal of Physics: Condensed Matter, 2020. Accepted manuscript. URL: https://doi.org/10.1088/1361-648X/ab8b9c.

20. Kramers H. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica. 1940. 7. P. 284–304.

21. Vineyard G.H. Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957, 3, P. 121–127.

22. W. F. Brown W.F. Thermal fluctuation of fine ferromagnetic particles. IEEE Transactions on Magnetics, 1979, MAG-15, P. 1196–1208.

23. Bessarab P.F., Uzdin V.M., J’onsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Computer Physics Communications, 2015, 196, P. 335–347.


Review

For citations:


Badarneh M., Kwiatkowsk G.J., Bessarab P.F. Mechanisms of energy-efficient magnetization switching in a bistable nanowire. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(3):294–300. https://doi.org/10.17586/2220-8054-2020-11-3-294-300

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)