Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Разработка схемы декодера 2:4 и 3:8 с использованием технологии QCA

https://doi.org/10.17586/2220-8054-2021-12-4-442-452

Аннотация

Клеточные автоматы с квантовыми точками — это новая технология в области нанотехнологий, которая может заменить существующую технологию CMOS. КМОП-технология имеет свои ограничения, связанные с высоким током утечки. Однако технология QCA имеет более высокую скорость работы и очень низкое энергопотребление. В этой статье схемы 2-4 и 3-8 декодера были выполнены с использованием новой конструкции схемы инвертора, которая помогает уменьшить рассеивание энергии в схемах. Наконец, предложенные конструкции сравниваются с ранее сделанными конструкциями. Все схемы в этой статье были смоделированы с помощью программного обеспечения QCA Designer.

Об авторах

Ratna Chakrabarty
Institute of Engineering & Management, Department of Electronics & Communication Engineering
Индия

Salt Lake Electronics Complex, Sector V, Kolkata, 700091.



S. Roy
Institute of Engineering & Management, Department of Electronics & Communication Engineering
Индия

Salt Lake Electronics Complex, Sector V, Kolkata, 700091.



T. Pathak
Institute of Engineering & Management, Department of Electronics & Communication Engineering
Индия

Salt Lake Electronics Complex, Sector V, Kolkata, 700091.



D. Ghosh
Institute of Engineering & Management, Department of Electronics & Communication Engineering
Индия

Salt Lake Electronics Complex, Sector V, Kolkata, 700091.



N. K. Mandal
University of Engineering & Management, Department of Electronics & Communication Engineering
Индия

Salt Lake Electronics Complex, Sector V, Kolkata, 700091.



Список литературы

1. Zoka S., Gholami M.A. Novel efficient full adder–subtractor in QCA nanotechnology. Int. Nano Lett., 2019, 9, P. 51–54.

2. Sen B., Rajoria A., Sikdar B.K. Design of Efficient Full Adder in Quantum-Dot Cellular Automata. The Scientific World Journal, 2013, 250802.

3. Jaiswal R., Sasamal T.N. Efficient design of full adder and subtractor using 5-input majority gate in QCA. Tenth International Conference on Contemporary Computing (IC3), 2017, P. 1–6.

4. Aishwarya Tambe, Snehal Bhakre, Sankit Kassa. Design and Analysis of (2×1) and (4×1) Multiplexer Circuit in Quantum dot Cellular Automata Approach. Int. Journal of Innovative Technology and Exploring Engineering, 2019, 8 (6S3).

5. Firdous Ahmad. An Optimal Design of QCA Based 2n:1/1:2n Multiplexer/Demultiplexer and Its Efficient Digital Logic Realization. Microprocessors and Microsystems, 2018, 56, P. 64–75.

6. Khan A., Mandal S., Nag S., Chakrabarty R. Efficient multiplexer design and analysis using quantum dot cellular automata. IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 2016, P. 163–168.

7. Debarka Mukhopadhyay, Paramartha Dutta. Quantum Cellular Automata based Novel Unit 2:1 Multiplexer. Int. Journal of Computer Applications, 2012, 43 (2), P. 22–25.

8. Kianpour M., Sabbaghi-Nadooshan R. A Novel Modular Decoder Implementation in Quantum-Dot Cellular Automata (QCA). Int. Conference on Nanoscience, Technology and Societal Implications, Bhubaneswar, 2011, P. 1–5.

9. Mingliang Zhang, Wenqiang Li, et al. A Programmable Hamming Encoder/Decoder System Design with Quantum-dot Cellular Automata.3rd Int. Conference on Electronic Information Technology and Computer Engineering, 2019, P. 1338–1345.

10. Angizi S., Sarmadi S., Sayedsalehi S., Navi K. Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectronics Journal, 2015, 46 (1), P. 43–51.

11. Milad Bagherian Khosroshahy, Mohammad Hossein Moaiyeri, Keivan Navi, Nader Bagherzadeh. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results in Physics, 2017, 7, P. 3543–3551.

12. Radhouane Laajimi. Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits. In Advanced Electronic Circuit – Principles, Architectures and Applications on Emerging Technologies, IntechOpen, London, 2018.

13. Naqvi S.R., Akram T., et al. A dynamically reconfigurable logic cell: from artificial neural networks to quantum-dot cellular automata. Appl. Nanosci., 2018, 8, P. 89–103.

14. Lent C.S., Tougaw P.D. A device architecture for computing with quantum dots. Proceedings of the IEEE, 1997, 85 (4), P. 541–557.

15. Abbasizadeh A., Mosleh M. Ultra dense 2-to-4 decoder in quantum-dot cellular automata technology based on MV32 gate. ETRI Journal, 2020, 42 (6), P. 912–921.

16. Seyedi S., Navimipour N.J. An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata. Int. Journal of Theoretical Physics, 2018, 57, P. 2022–2033.

17. Kumar M., Sasamal T.N. An Optimal design of 2-to-4 Decoder circuit in coplanar Quantum-dot cellular automata. Energy Procedia, 2017, 117, P. 450–457.

18. De D., Purkayastha T., Chattopadhyay T. Design of QCA based Programmable Logic Array using decoder. Microelectronics Journal, 2016, 55, P. 92–107.

19. QCADesigner 2.0. URL: https://qcadesigner.software.informer.com/2.0/.


Рецензия

Для цитирования:


Chakrabarty R., Roy S., Pathak T., Ghosh D., Mandal N.K. Разработка схемы декодера 2:4 и 3:8 с использованием технологии QCA. Наносистемы: физика, химия, математика. 2021;12(4):442-452. https://doi.org/10.17586/2220-8054-2021-12-4-442-452

For citation:


Chakrabarty R., Roy S., Pathak T., Ghosh D., Mandal N.K. Design of 2:4 and 3:8 decoder circuit using QCA technology. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(4):442-452. https://doi.org/10.17586/2220-8054-2021-12-4-442-452

Просмотров: 83


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)