Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions

https://doi.org/10.17586/2220-8054-2021-12-4-505-511

Abstract

Single-phase BaF2:Ce solid solutions containing 30 – 40 mol. % cerium with the simultaneous entry of potassium into the crystal lattice in an amount of 0.7 – 0.8 mol. % were prepared by coprecipitation from aqueous nitrate solutions with potassium fluoride as the fluoridating agent. The cerium X-ray luminescence intensity increases in response to increasing cerium concentration contrary to the concentration quenching effect.

About the Authors

D. S. Yasyrkina
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow.



S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow.



A. A. Alexandrov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow.



S. Kh. Batygov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow.



V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow.



P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow.



References

1. Rodnyi P.A. Core-valence luminescence scintillators. Radiat. Meas., 2004, 38, P. 343–352.

2. Seliverstov D.M., Demidenko A.A., Garibin E.A., Gain S.D., Gusev Yu. I., Fedorov P.P., Kosyanenko S.V., Mironov I.A., Osiko V.V., Rodnyi P.A., Smirnov A.N., Suvorov V.M. New fast scintillators on the base of BaF2 crystals with increased light yield of 0.9 ns luminescence for TOF PET. Nuclear Instruments and Methods in Physics Research, 2012, 695, P. 369–372.

3. Visser R., Dorenbos P., van Eijk C.W.E., Meijerink A., Blasse G. Energy transfer processes involving different luminescence center in BaF2:Ce. J. Phys. Condens. Matter, 1993, 5, P. 1659–1680.

4. Sobolev B.P. Multicomponent crystals based on heavy metal fluorides for radiation detectors. Barcelona: Institut d‘Estudis Catalans, 1995, P. 265.

5. Wojtowicz A.J., Szupryczynski P., Glodo J., Drozdowski W., Wisniewski D. Radioluminescence and recombination processes in BaF2:Ce. J. Phys.: Condens. Matter, 2000, 12, P. 4097–4124.

6. van Eijk C.W.E., et.al. Inorganic-scintillator development. Nucl. Instrum. Meth.: Phys. Res., 2001, 460(1), P. 1–14.

7. Dorenbos P., et al. The Effects of La3+ and Ce3+ Dopants on the Scintillation Properties of BaF2 Crystals. Radiat. Effects Defects Solids, 2000, 119-121(1), P. 87–92.

8. Janus S., Wojtowicz A.J. Scintillation light yield of BaF2:Ce. Opt. Mater., 2009, 31, P. 523–526.

9. Batygov S.Kh., Fedorov P.P., Kuznetsov S.V., Osiko V.V. Luminescence of Ba1−xCexF2+x:Ce3+ Crystals. Doklady Physics, 2016, 61(1), P. 50–54.

10. Rodnyi P.A., Gain S.D., Mironov I.A., Garibin E.A., Demidenko A.A., Seliverstov D.M., Gusev Yu.I., Fedorov P.P., Kuznetsov S.V. Spectralkinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2:Ce. Phys. Solid State, 2010, 52(9), P. 1910–1914.

11. Fedorov P.P., Ashurov M.Kh., Boboyarova Sh.G., Boibobeva S., Nuritdinov I., Garibin E.A., Kuznetsov S.V., Smirnov A.N. Absorption and Luminescence Spectra of CeF3-Doped BaF2 Single Crystals and Nanoceramics. Inorganic Materials, 2016, 52(2), P. 213–217.

12. Batygov S.Kh., Bolyasnikova L.S., Garibin E.A., Demidenko V.A., Doroshenko M.E., Dykelskii K.V., Luginina A.A., Osiko V.V., Fedorov P.P. BaF2:Ce3+ scintillation ceramics. Doklady Physics, 2008, 53(9), P.485–488.

13. Fedorov P.P., Kuznetsov S.V., Osiko V.V. Elaboration of nanofluorides and ceramics for optical and laser applications. Photonic and Electronic Properties of Fluoride Materials, 2016, 513, P. 7-31.

14. Luginina A.A., Baranchikov A.E., Popov A.I., Fedorov P.P., Preparation of barium monohydrofluoride BaF2HF from nitrate aqueous solutions. Materials Res. Bull., 2014, 49(1), P. 199–205.

15. Luo J., Ye L., Xu J. Preparation and properties of Ce3+:BaF2 transparent ceramics by vacuum sintering. J. Nanoscience and Nanotechnology, 2016, 16, P. 3985–3989.

16. Fedorov P.P. Association of point defects in nonstoichiometric M1−xRxF2+x fluorite-type solid solutions. Butll. Soc. Cat. Cien., 1991, 12(2), P. 349–381.

17. Sobolev B.P. The Rare Earth Trifluorides. P.2. Introduction to materials science of multicomponent metal fluoridecrystals. Barcelona: Institut d‘Estudis Catalans, 2000, P. 460.

18. Sobolev B.P., Tkachenko N.L. Phase diagrams of BaF2-(Y, Ln)F3 systems. J. Less-Common Metals, 1982, 85(2), P. 155–170.

19. Kuznetsov S.V., Aleksandrov A.A., Fedorov P.P. Optical Fluoride Nanoceramics. Inorganic Materials, 2021, 57(6), P. 555–578.

20. Liu Z., Jia M., Yi G., Mei B., Jing Q., Liu P. Fabrication and microstructure characterizations of transparent Er:CaF2 composite ceramic. J. Am. Ceram. Soc., 2019, 102(1), P. 285–293.

21. Li J., Chen X., Tang L., Li Y., Wu Y. Fabrication and properties of transparent Nd-doped BaF2 ceramics. J. Am. Ceram. Soc., 2019, 102(1), P. 178–184.

22. Yi G., Li W., Song J., Mei B., Zhou Z., Su L. Structural, spectroscopic and thermal properties of hot-pressed Nd:(Ca0.94Gd0.06)F2.06 transparent ceramics. J. Eur. Ceram. Soc., 2018, 38(9), P. 3240–3245.

23. Zhou Z., Mei B., Song J., Li W., Yang Y., Yi G. Effects of Sr2+ content on microstructure and spectroscopic properties of Nd3+ doped Ca1−xSrxF2 transparent ceramics. J. Alloys Compd., 2019, 811, P. 152046.

24. Chen X., Wu Y. High Concentration Ce3+ doped BaF2 transparent ceramics, J. Alloys Compd., 2020, 817.

25. Fedorov P.P., Kuznetsov S.V., Mayakova M.N., Voronov V.V., Ermakov R.P., Baranchikov A.E., Osiko V.V. Coprecipitation from aqueous solutions to prepare binary fluorides. Russian J. Inorg. Chem., 2011, 56(10), P. 1525–1531.

26. Kuznetsov S.V., Fedorov P.P., Voronov V.V., Samarina K.S., Ermakov R.P., Osiko V.V., Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. Rus. J. Inorg. Chem., 2010, 55(4), P. 484–493.

27. Batygov S.Kh., Mayakova M.N., Kuznetsov S.V., Fedorov P.P., X-ray luminescence of BaF2:Ce3+ powders. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(6), P. 752–756.

28. Mayakova M.N., Voronov V.V., Iskhakova L.D., Kuznetsov S.V., Fedorov P.P. Low-temperature phase formation in the BaF2-CeF3 system. J. Fluorine Chem., 2016, 187, P. 33–39.

29. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Ermakov R.P., Samarina K.S., Popov A.I., Osiko V.V. Co-Precipitation of Yttrium and Barium Fluorides from Aqueous Solutions. Mat. Res. Bull., 2012, 47, P. 1794–1799.

30. Fedorov P.P., Sobolev B.P. Concentration dependence of unit-cell parameters of phases M1−xRxF2+x with the fluorite structure. Sov. Phys. Crystallogr., 1992, 37(5), P. 651–656.

31. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalkogenides. Acta Cryst., 1976, 32, P. 751–767.

32. Murin I.V., Gunsser W. Relaxation methods for the study of ion transport in halide systems. Solid State Ionics, 1992, 53-56, P. 837–842.

33. Den Hartog H.W., Langevoort J.C. Ionic thermal current of concentrated cubic solid solutions of SrF2:LaF3 and BaF2:LaF3. Phys. Rev. B., 1981, 24(6), P. 3547–3554.

34. den Hartog H.W., Pen K.F., Meuldijk J. Defect structure and charge transport in solid solutions Ba1−xLaxF2+x. Phys. Rev. B, 1983, 28(10), P. 6031–6040.

35. Wapenaar K.E.D., Van Koesveld J.L., Schoonman J. Conductivity enhancement in fluorite-structured solid solutions. Solid State Ionics, 1981, 2, P. 145–154.

36. Andersen N.H., Clausen K.N., Kjems J.K., Schoonman J. A study of the disorder in heavily doped Ba1−xLaxF2+x by neutron scattering, ionic conductivity and specific heat measurements. J. Phys. C: Sol. St. Phys., 1986, 19, P. 2377–2389.

37. Alexandrov V.B., Otroshchenko L.P., Fykin L.E., Bydanov N.N., Sobolev B.P. Features of the defective structure of Ba0.5Ce0.5F2.5 fluorite solid solution according to the neutronographic study of single crystals. Cryst. Reports., 1989, 34(6), P. 1997–1501 (in Russian).

38. Otroshchenko L.P., Alexandrov V.B., Muradyan L.A., Sarin B.A., Sobolev B.P. Neutron diffraction study of the features of fluorine ions incorporsation into Ba1−xRxF2+x solid solutions. Butll. Soc. Cat. Cien., 1991, 12(2), P. 383–391.

39. Sobolev B.P., Golubev A.M., Otroshchenko L.P. et.al. Crystallography Rep., 2003, 48(6), P. 1012.

40. Aminov L.K., Kurkin I.N., Kurzin S.P., Gromov I.A., Mamin G.V., Rakhmatullin R.M. Detection of cuboctahedral clusters in mixed crystals by the EPR method. Physics of the Solid State, 2007, 49(11), P. 1990–1993 (in Russian).

41. Maksimov B.A., Solans Kh., Dudka A.P., Genkina E.A., Font-Badria M., Buchinskaya I.I., Loshmanov A.A., Golubev A.M., Simonov V.I., Font-Altaba M., Sobolev B.P. The Fluorite-matrix-based Ba4R3F17 (R=Y, Yb) crystal structure. Ordering of cations and specific features of the anionic motif. Crystallography Rep., 1996, 41, P. 50–57.

42. Sobolev B.P. The Rare Earth Trifluorides. P.1.The high temperature chemistry of the rare earth trifluorides. Barcelona: Institut d‘Estudis Catalans, 2000, P. 520.

43. Grover V., Arhary S.N., Patwe S.S.J., Tyagi A.K. Synthesis and characterization of Ba1−xNdxF2+x (0.00 ≤ x ≤ 1.00). Mat Res. Bull., 2003, 38, P. 1101–1111.

44. Zolotova K.N., Kolbanev I.V., Ardashnikova E.I., Abakumov A.M., Dolgikh V.A. Interactions in the NdF3-Nd2O3-MF2 (M=Ba, Sr) systems. Russ. J. Inorg. Chem., 2011, 56, P. 1623-1631.

45. Fedorov P.P., Luginina A.A., Popov A.I. Transparent Oxyfluoride Glass Ceramics. J. Fluorine Chem., 2015, 172, P. 22–50.

46. Kieser M., Greis O. Preparation and properties of fluorite-related superstructure phases Ba4RE3F17 with RE = Ce-Nd, Sm-Lu, and Y. Z. anorg. allg. Chem., 1980, 469, P. 164–171.

47. Karbowiak M., Cichos J., Does BaYF5 nanocrystals exist? – The BaF2-YF3 solid solution revisited using photoluminescence spectroscopy. J. Alloys Compd., 2016, 673, P. 258–264.

48. Kuznetsov S.V., Nizamutdinov A.S., Mayakova M.N., Voronov V.V., Madirov E.I., Khadiev A.R., Spassky D.A., Kamenskikh I.A., Yapryntsev A.D., Ivanov V.K., Marisov M.A., Semashko V.V., Fedorov P.P. Synthesis and down conversion of luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. Nanosystems: Phys., Chem., Math., 2019, 10(2), P. 190–198.

49. Li T., Li Y., Luo R., Ning Zh., Zhao Y., Liu M., Lai X., Zhong Ch., Wang Ch., Zhang J., Bi J., Gao D. Novel Ba(Gd1−xYx)0.78F5: 20 mol % Yb3+, 2 mol % Tm3+(0 6 x 6 1.0) solid solution nanocrystals: A facile hydrothermal controlled synthesis, enhanced upconversion luminescent and paramagnetic properties. J. Alloys Comp., 2018, 740, P. 1204–1214.

50. Nizamutdinov A.S., Kuznetsov S.V., Madirov E.I., Voronov V.V., Khadiev A.R., Yapryntsev A.D., Ivanov V.K., Semashko V.V., Fedorov P.P. UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells. Optical Materials, 2020, 108, P. 110185.

51. Kuznetsov S.V., Nizamutdinov A.S., Madirov E.I., Voronov V.V., Tsoy K.S., Khadiev A.R., Yapryntsev A.D., Ivanov V.K, Kharintsev S.S., Semashko V.V. Near infrared down-conversion luminescence. of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. Nanosystems: Phys., Chem., Math., 2020, 11(3), P. 316–323.

52. Bevan D.J.M., Strahle J., Creis O. The crystal structure of tveitite, an ordered yttrofluorite mineral. J. Solid State Chem. 1982, 44(1), P. 75–81.

53. Rozhnova Yu. A., Kuznetsov S.V., Luginina A.A., Voronov V.V., Ryabova A.V., Pominova D.V.,Ermakov R.P., Usachev V.A., Kononenko N.E., Baranchikov A.E., Ivanov V.K., Fedorov P.P. New Sr1−x−yRx(NH4)yF2+x−y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. MatChemPhys., 2016, 172, P. 150–157.

54. Pavlova L.N., Fedorov P.P., Ol’khovaya L.A., Ikrami D.D, Sobolev B.P. Ordering of heterovalent solid solution with the fluorite structure in the NaF-BaF2-GdF3 system. Crystallogr. Rep., 1993, 38(2), P. 221–224.


Review

For citations:


Yasyrkina D.S., Kuznetsov S.V., Alexandrov A.A., Batygov S.Kh., Voronov V.V., Fedorov P.P. Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(4):505-511. https://doi.org/10.17586/2220-8054-2021-12-4-505-511

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)