Stability of intersite dark solitons in a parametrically driven discrete nonlinear Schrodinger equation¨
https://doi.org/10.17586/2220-8054-2019-10-4-391-397
Abstract
In this paper, a parametrically driven discrete nonlinear Schrodinger equation will be considered for defocusing case. Analytical and numerical¨ calculations will be performed to determine the existence and stability of intersite dark discrete solitons admitted by discrete nonlinear Schrodinger¨ equation. It will be shown that a parametric driving can stabilizes intersite discrete dark solitons. Stability windows of all the fundamental solitons will be presented and approximations to the onset of instability will be derived using perturbation theory, with accompanying numerical results.
About the Authors
O. P. SwamiIndia
Loonkaransar, Bikaner, Rajasthan, 334603
V. Kumar
India
Bikaner, Rajasthan, 334001
B. Suthar
Russian Federation
Nokha, Bikaner, Rajasthan, 334803
A. K. Nagar
India
Bikaner, Rajasthan, 334001
References
1. Kevrekidis P.G. The Discrete Nonlinear Schr”odinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives. Berlin, Springer, 2009.
2. Lederer F., Stegeman G.I., et al. Discrete solitons in optics. Phys. Rep., 2008, 463, P. 1.
3. Scott A. Encyclopedia of Nonlinear Science. New York and London, Routledge, 2005.
4. Christinsen P.L., Scott A.C. Devydon’s Soliton revisited, Self-tarpping of vibrational energy in protein. Denmark, Springer Science, 1989.
5. Christodoulides D.N., Joseph R.I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Optics Letters, 1988, 13 (9), P. 794–796.
6. Susanto H., Johansson M. discrete dark solitons with multiple holes. Phys. Rev. E, 2005, 72, 016605(1–8).
7. Syafwan M., Susanto H., Cox S.M. Discrete solitons in electromechanical resonators. Phys. Rev. E, 2010, 81 (2), 026207(1–14).
8. Syafwan M. The existence and stability of solitons in discrete nonlinear Schrdinger equations. Ph.D. Thesis, University of Nottingham, 2012.
9. Susanto H., Hoq Q.E., Kevrekidis P.G. Stability of discrete solitons in the presence of parametric driving type nonlinear Schrodinger lattices.¨ Phys. Rev. E, 2006, 74, 067601(1–4).
10. Swami O.P., Kumar V., Nagar A.K. Bright Solitons In A Parametrically Driven Discrete Nonlinear Schrodinger Equation.¨ Int. J. Mod. Phys., 2013, 22, P. 570–575.
11. Kaurov V.M., Kuklov A.B. Josephson vortex between two atomic Bose-Einstein condensates. Phys. Rev. A, 2005, 71, 011601(1–4).
12. Kaurov V.M., Kuklov A.B. Atomic Josephson vortices. Phys. Rev. A, 2006, 73, 013627(1–8).
13. Alexeeva N.V., Barashenkov I.V., Pelinovsky D.E. Dynamics of the parametrically driven NLS solitons beyond the onset of the oscillatory instability. Nonlinearity, 1999, 12, P. 103–140.
14. Kivshar Yu.S. Bright and dark spatial solitons in non-Kerr media. Optical and Quantum Electronics, 1998, 30, P. 571–614.
15. Hayata K., Koshiba M. Theory of stationary solitary waves generated by optical parametric interactions in the presence of Kerr-type nonlinearities and dissipations. J. Opt. Soc. Am. B, 1995, 12, P. 2288–2295.
16. Baesens C., Kim S., MacKay R.S. localised modes on localised equilibria. Physica D, 1998, 133, P. 242.
Review
For citations:
Swami O.P., Kumar V., Suthar B., Nagar A.K. Stability of intersite dark solitons in a parametrically driven discrete nonlinear Schrodinger equation¨. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(4):391–397. https://doi.org/10.17586/2220-8054-2019-10-4-391-397