Discrimination and decoherence of Schrödinger cat states in lossy quantum channels
https://doi.org/10.17586/2220-8054-2021-12-6-697-702
Аннотация
We investigate environment induced effects of decoherence in discrimination between the Schrödinger cat states transmitted through noisy quantum¨ channels such as optical fibers. We calculate the fidelity and the statistics of photocounts for both even and odd coherent states. The method that uses the beam splitter-like transformation acting in the enlarged Hilbert space to model the quantum channel is compared with the approach based on the Lindblad dynamics of one-mode bosonic systems.
Об авторах
R. GoncharovРоссия
A. Kiselev
Россия
N. Veselkova
Россия
Ranim Ali
Россия
F. Kiselev
Россия
Список литературы
1. Dodonov V.V., Malkin I.A., Man’ko V.I. Even and odd coherent states and excitations of a singular oscillator, Physica, 1974, 72(3), P. 597–615.
2. Hao L., Tang H., Wang Q. Resolution improvement of angular rotation measurement through even coherent states coupled with parity detection strategy. Journal of Optics, 2020, 22(2), P. 025203.
3. Lund A.P., Ralph T.C., Haselgrove H.L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett., 2008, 100, P. 030503.
4. Sangouard N., Simon C., Gisin N., Laurat J., Tualle-Brouri R., Grangier P. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B, 2010, 27(6), P. A137–A145.
5. Brask J.B., Rigas I., Polzik E.S., Andersen U.L., Sørensen A.S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett., 2010, 105, P. 160501.
6. Ghasemi M., Tavassoly M.K. Toward a quantum repeater protocol based on the coherent state approach. Laser Physics, 2019, 29.
7. Parker R.C., Joo J., Spiller T.P. Photonic hybrid state entanglement swapping using cat state superpositions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2243), P. 20200237.
8. Yurke B., Stoler D. Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett., 1986, 57, P. 13–16.
9. Neergaard-Nielsen J.S., Nielsen B.M., Hettich C., Mølmer K., Polzik E.S., Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett., 2006, 97, P. 083604.
10. Ourjoumtsev A., Ferreyrol F., Tualle-Brouri R., Grangier P. Preparation of non-local superpositions of quasi-classical light states. Nature Physics, 2009, 5, P. 189–192.
11. Serikawa T., Yoshikawa J.-i., Takeda S., Yonezawa H., Ralph T.C., Huntington E.H., Furusawa A. Generation of a cat state in an optical sideband. Phys. Rev. Lett., 2018, 121, P. 143602.
12. Takase K., Yoshikawa J.-i., Asavanant W., Endo M., Furusawa A. Generation of optical Schrodinger cat states by generalized photon subtrac-¨ tion. Phys. Rev. A, 2021, 103, P. 013710.
13. Ourjoumtsev A., Jeong H., Tualle-Brouri R., Grangier P. Generation of optical “Schrodinger cats” from photon number states.¨ Nature, 2007, 448, P. 784–786.
14. Glancy S., de Vasconcelos H.M. Methods for producing optical coherent state superpositions. J. Opt. Soc. Am. B, 2008, 25(5), P. 712–733.
15. S.J. van Enk, Hirota O. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A, 2001, 64, P. 022313.
16. Miroshnichenko G.P., Kiselev A.D., Trifanov A.I., Gleim A.V. Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. J. Opt. Soc. Am. B, 2017, 34(6), P. 1177–1190.
17. Kelley P.L., Kleiner W.H. Theory of electromagnetic field measurement and photoelectron counting. Phys. Rev., 1964, 136, P. A316–A334.
18. Kozubov A., Gaidash A., Miroshnichenko G. Quantum model of decoherence in the polarization domain for the fiber channel. Phys. Rev. A, 2019, 99, P. 053842.
19. Gaidash A., Kozubov A., Miroshnichenko G. Dissipative dynamics of quantum states in the fiber channel. Phys. Rev. A, 2020, 102, P. 023711.
20. Kiselev A.D., Ali R., Rybin A.V. Lindblad dynamics and disentanglement in multi-mode bosonic systems. Entropy, 2021, 23(11).
Рецензия
Для цитирования:
, , , , . Наносистемы: физика, химия, математика. 2021;12(6):697-702. https://doi.org/10.17586/2220-8054-2021-12-6-697-702
For citation:
Goncharov R.K., Kiselev A.D., Veselkova N.G., Ali R., Kiselev F.D. Discrimination and decoherence of Schrödinger cat states in lossy quantum channels. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):697-702. https://doi.org/10.17586/2220-8054-2021-12-6-697-702