Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Time dependent quantum graph with loop

https://doi.org/10.17586/2220-8054-2017-8-4-420-425

Abstract

   A quantum graph, consisting of a ring and segment is considered. We deal with the free Schr¨odinger ooperator at the edges and Kirchhoff conditions at the internal vertex. The lengths of the graph edges varies in time. Time evolution of wave packet is studied for different parameters of length varying law.

About the Authors

D. A. Eremin
Ogarev Mordovia State University
Russian Federation

Department of Mathematics and IT

Bolshevistskaya Str. 68; Saransk



E. N. Grishanov
Ogarev Mordovia State University
Russian Federation

Department of Mathematics and IT

Bolshevistskaya Str. 68; Saransk



O. G. Kostrov
Ogarev Mordovia State University
Russian Federation

Department of Mathematics and IT

Bolshevistskaya Str. 68; Saransk



D. S. Nikiforov
ITMO University
Russian Federation

Department of Higher Mathematics

197101; Kroverkskiy pr. 49; St. Petersburg



I. Y. Popov
ITMO University
Russian Federation

Department of Higher Mathematics

197101; Kroverkskiy pr. 49; St. Petersburg



References

1. Pauling L. The Diamagnetic Anisotropy of Aromatic Molecules. J. Chem. Phys., 1936, 4, P. 673.

2. Gerasimenko N.I., Pavlov B.S. Scattering problems on noncompact graphs. Theoret. Math. Phys., 1988, 74, P. 230–240.

3. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. with an appendix by P. Exner. Solvable Models in Quantum Mechanics: Second Edition, 2005. (Providence, R.I.: AMS Chelsea Publishing).

4. Pavlov B.S. The theory of extensions and explicity-solvable models. Russ. Math. Surv., 1987, 42(6), P. 127–168.

5. Popov I.Y., Kurasov P.A., Naboko S.N., Kiselev A.A., Ryzhkov A.E., Yafyasov A.M., Miroshnichenko G.P., Karpeshina Yu.E., Kruglov V.I., Pankratova T.F., Popov A.I. A distinguished mathematical physicist Boris S. Pavlov. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7, P. 782–788.

6. Exner P., Keating P., Kuchment P., Sumada T., Teplyaev A. Analysis on graph and its applications. Proc. Symp. Pure Math. Providence, RI, 2008, 77.

7. Duclos P., Exner P., Turek O. On the spectrum of a bent chain graph. J. Phys. A: Math. Theor., 2008, 41, P. 415206/1-18.

8. Popov I.Y., Skorynina A.N., Blinova I.V. On the existence of point spectrum for branching strips quantum graph. J. Math. Phys., 2014, 55, P. 033504/1-20.

9. Popov I.Y., Smirnov P.I. Spectral problem for branching hain quantum graph. Phys. Lett., 2013, A 377, P. 439–442.

10. Jose J.V., Gordery R. Study of a quantum Fermi-acceleration model. Phys. Rev. Lett., 1986, 56, P. 290.

11. Makowski A.J., Dembinski S.T. Exactly solvable models with ime-dependent boundary conditions. Phys. Lett., 1991, A, 154(5-6), P. 217–220.

12. Cacciapuoti C., Mantile A., Posilicano A. Time dependent delta-prime interactions in dimension one. Nanosystems: Phys. Chem. Math., 2016, 7(2), P. 303–314.

13. Matrasulov D.U., Yusupov J.R., Sabirov K.K., Sobirov Z.A. Time-dependent quantum graph. Nanosystems: Phys. Chem. Math., 2015, 6(2), P. 173–181.

14. Karpova O., Sabirov K., Otajanov D., Ruzmetov A., Saidov A.A. Absorbing boundary conditions for Schr¨odinger equation in a time-dependent interval. Nanosystems: Phys. Chem. Math., 2017, 8(1), P. 13–19.


Review

For citations:


Eremin D.A., Grishanov E.N., Kostrov O.G., Nikiforov D.S., Popov I.Y. Time dependent quantum graph with loop. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):420-425. https://doi.org/10.17586/2220-8054-2017-8-4-420-425

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)