Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Thermal stability of magnetic states in submicron magnetic islands

https://doi.org/10.17586/22208054201785572578

Abstract

The lifetime of magnetic states in single domain micromagnetic islands is calculated within the harmonic approximation to transition state theory. Stable magnetic states, minimum energy paths between them and first order saddle points determining the activation energy are analyzed and visualized on twodimensional energy surfaces. An analytical expression is derived for the preexponential factor in the Arrhenius rate expression for the reversal of the magnetic moment when the external field is directed either along the anisotropy axis or perpendicular to it.

About the Authors

S. Y. Liashko
ITMO University; ScienceScience Institute and Faculty of Physical Sciences, University of Iceland
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101

107 Reykjav´ık



I. S. Lobanov
ITMO University, Kronverkskiy
Russian Federation

49, St. Petersburg, 197101



V. M. Uzdin
ITMO University; St. Petersburg State University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101

St. Petersburg, 198504



H. J´onsson
Science Institute and Faculty of Physical Sciences, University of Iceland; Center for Nonlinear Studies
Russian Federation

107 Reykjav´ık

Los Alamos, NM 87545



References

1. Coffey W.T., Garanin D.A. and McCarthy D.J. Crossover formulas in the Kramers theory of thermally activated escape rates Application to spin systems.Advances in Chemical Physics, 2001, 117, P. 483.

2. Braun H.B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Advances in Physics, 2012, 61, P. 1.

3. Wigner E. The transition state method. Trans. Faraday Soc., 1938, 34, P. 29–41.

4. Kramers H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 1940, 7, P. 284–304.

5. Vineyard G.H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids, 1957, 3, P. 121.

6. Brown Jr.W.F. Thermal fluctuations of a singledomain particle. Phys. Rev., 1963, 130, P. 1677.

7. Brown Jr.W.F. Thermal Fluctuations of Fine Ferromagnetic Particles. IEEE Trans. Magn., 1979, MAG15, P. 1196–1208.

8. Braun H.B. Kramers’s rate theory, broken symmetries and magnetization reversal. J. Appl. Physics, 1994, 76, P. 6310–6315.

9. Visscher P.B., Zhu R. Lowdimensionality energy landscapes: Magnetic switching mechanisms and rates. Physica B, 2012, 407, P. 1340– 1344.

10. Fiedler G., Fidler J., Lee J., Schrefl T., Stamps R.L., Braun H.B. and Suess D., Direct calculation of the attempt frequency of magnetic structures using the finite element method. J. Appl. Phys., 2012, 111, P. 093917(7).

11. Bessarab P.F., Uzdin V.M. and J´onsson H. Harmonic Transition State Theory of Thermal Spin Transitions. Phys. Rev. B, 2012, 85, P. 184409(4).

12. Bessarab P.F., Uzdin V.M. and J´onsson H. Potential Energy Surfaces and Rates of Spin Transitions. Z. Phys. Chem., 2013, 227, P. 1543– 1557.

13. Bessarab P.F., Uzdin V.M. and J´onsson H. Calculations of magnetic states and minimum energy paths of transitions using a noncollinear extension of the AlexanderAnderson model and a magnetic force theorem. Phys. Rev. B, 2014, 89, P. 214424(12).

14. W. Wernsdorfer, E. Bonet Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard and D. Mailly. Experimental evidence of the N´eelBrown model of magnetization reversal. Phys. Rev. Lett., 1997, 78, P. 1791.

15. Bessarab P.F., Uzdin V.M. and J´onsson H. Size and Shape Dependence of Thermal Spin Transitions in Nanoislands. Phys. Rev. Lett., 2013, 110, P. 020604(5).

16. Krause S., Herzog G., Stapelfeldt T., BerbilBautista L., Bode M., Vedmedenko E. Y., Wiesendanger R. Magnetization reversal of nanoscale islands: How size and shape affect the Arrhenius Pprefactor. Phys.Rev. Lett., 2009, 103, P. 127202(4).

17. Farhan A., Derlet P.M., Kleibert A., Balan A., Chopdekar R.V., Wyss M., Anghinolfi L., Nolting F., Heyderman L.J. Exploring hypercubic energy landscapes in thermally active finite artificial spinice systems. Nature Physics, 2013, 9, P. 375(8).

18. Liashko S.Y., Uzdin V.M. and J´onsson H. The effect of temperature and external field on transitions in elements of kagome spin ice. New J. Phys., 2017, (accepted) DOI: 10.1088/13672630/aa8b96.

19. Ivanov A., Bessarab P.F., Uzdin V.M. and J´onsson H. Magnetic exchange force microscopy: Theoretical analysis of induced magnetization reversals. Nanoscale, 2017, 9, P. 13320–13325.

20. Schmidt R., Schwarz A., Wiesendanger R. Magnetization switching utilizing the magnetic exchange interaction. Phys. Rev. B, 2012, 86, P. 174402(6).

21. Lobanov I.S., J´onsson H. and Uzdin V. M. Mechanism and activation energy of magnetic skyrmion annihilation obtained from minimum energy path calculations. Phys. Rev. B , 2016, 94, P. 174418(7).

22. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., J´onsson H. The effect of confinement and defects on the thermal stability of skyrmions. Physica B, 2017, (in press), DOI; 10.1016/j.physb.2017.09.040.

23. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., J´onsson H. Energy surface and lifetime of magnetic skyrmions. J. Magn. Magn. Mat., (accepted). Manuscript available at https://arxiv.org/pdf/1707.00124.pdf.

24. Bessarab P.F., Uzdin V.M. and J´onsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Comp. Phys. Commun., 2015, 196, P. 335–347.

25. Bessarab P. F. Comment on “Path to collapse for an isolated N´eel skyrmion”. Phys. Rev. B , 2017, 95, P. 136401(2).

26. Moskalenko M. , Bessarab P.F., Uzdin V.M. and J´onsson H. Qualitative Insight and Quantitative Analysis of the Effect of Temperature on the Coercivity of a Magnetic System. AIP Advances, 2016, 6, P. 025213(8).

27. Stoner E.C., Wohlfarth E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. A, 1948, 240, P. 599–642.

28. Coffey W.T, Crothers D.S.F., Dormann J.L., Kalmykov Y.P., Kennedy E.C., Thermally activated relaxation time of a single domain ferromagnetic particle subjected to a uniform field at an oblique angle to the easy axis: Comparison with experimental observations. Phys. Rev. Lett., 1998, 80, P. 5655–5568.

29. Poperechny I.S., Raikher Yu.L., Stepanov V.I. Dynamic magnetic hysteresis in singledomain particles with niaxial anisotropy. Phys.Rev. B, 2010, 82, P. 174423(14).

30. Franco V., Conde A. Thermal effects in a StonerWohlfarth model and their influence on magnetic anisotropy determination. J. Magn. Magn. Mat., 2004, 278, P. 28–38.

31. De Vries J., Bolhuis T., Abelmann L. Temperature dependence of the energy barrier and switching field of submicron magnetic islands with perpendicular anisotropy. New J. Phys., 2017, (accepted) DOI:10.1088/13672630/aa8082.

32. Engelen J.B.C., Delalande M., le Febre A.J., Bolhuis T., Shimatsu T., Kikuchi N., Abelmann L., Lodder J.C. Thermally induced switching field distribution of a single CoPt dot in a large array. Nanotechnology, 2010, 21, P. 035703(7).

33. J´onsson H., Mills G., Jacobsen K.W. Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne B.J., Ciccotti G., Coker D.F. (World Scientific, Singapore, 1998), P. 385–404.

34. Henkelman G., Uberuaga B.P., J´onsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 2000, 113, P. 9901–9904.

35. Vlasov S., Bessarab P.F., Uzdin V.M. and J´onsson H. Classical to quantum mechanical tunneling mechanism crossover in thermal transitions between magnetic states. Faraday Discuss., 2016, 195, P. 93–109.

36. Vlasov S., Bessarab P.F., Uzdin V.M. and J´onsson H. Calculations of the onset temperature for tunneling in multispin systems. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8, P. 454–461.


Review

For citations:


Liashko S.Y., Lobanov I.S., Uzdin V.M., J´onsson H. Thermal stability of magnetic states in submicron magnetic islands. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):572–578. https://doi.org/10.17586/22208054201785572578

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)