Ce:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical and scintillation properties
https://doi.org/10.17586/2220-8054-2017-8-3-351-359
Abstract
Transparent Ce:YAG ceramics were fabricated by the solid-state reaction method with an additional round of pre-calcining using nanopowders of Ce2xY2−2xO3 (x = 0.001, 0.01, 0.03 and 0.05) and Al2O3 synthesized by laser ablation. Additional pre-calcining of the nanopowder mixture in air was used to partially transform the oxides into the YAG phase before sintering. The transmittance of the obtained 2-mm-thick Ce:YAG ceramics was over 81 % in the wavelength range of 500–900 nm. The average volumes of the scattering centers in the obtained ceramics were evaluated by direct count method to be 34, 74, 53, 50 ppm for 0.1, 1, 3 and 5 % Ce doping concentration, respectively. The absolute light yields, energy resolutions under 662 keV gamma ray, and decay curves of scintillations of the fabricated Ce:YAG samples were measured and compared to those of Ce:YAG and CsI:Tl single crystals.
Keywords
About the Authors
V. V. OsipovRussian Federation
Amundsena St. 106, Ekaterinburg 620016
V. A. Shitov
Russian Federation
Amundsena St. 106, Ekaterinburg 620016
K. E. Lukyashin
Russian Federation
Amundsena St. 106, Ekaterinburg 620016
R. N. Maksimov
Russian Federation
Amundsena St. 106, Ekaterinburg 620016; Mira St. 19, Ekaterinburg 620002
A. V. Ishchenko
Russian Federation
Mira St. 19, Ekaterinburg 620002
V. V. Platonov
Russian Federation
Amundsena St. 106, Ekaterinburg 620016
References
1. Borisevich A. et al. On the development of heavy and fast scintillation nano-ceramics. IEEE Nulcear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008, P. 3533–3535.
2. Greskovich C., Duclos S. Ceramic scintillators. Annu. Rev. Mater. Sci., 1997, 27 (1), P. 69–88.
3. Ikesue A., et al. Ceramic lasers. Cambridge University Press, Cambridge, 2013, 444 .
4. Deshmukh P., Satapathy S., Singh M.K., Gupta P.K. Effect of surfactant concentration and solvent used for washing in the preparation of Yb:Y2O3 transparent ceramics. Nanosystems: physics, chemistry, mathematics, 2016, 7 (3), P. 534–537.
5. Nikl M., Yanagida T., et al. Optical Ceramics for Fast Scintillator Materials. Recent Advances in Ceramic Materials Research, Nova Science Publishers, Inc., 2013, P. 127–176.
6. Kaminskii A.A. Laser crystals and ceramics: recent advances. Laser Photon Rev., 2007, 1 (2), P. 93.
7. Mihokova E., Nikl M., et al. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. J. Lumin., 2007, 126, P. 77–80.
8. Bok J., et al. Effect of oxidation annealing on optical properties of YAG:Ce single crystals. Opt. Mater., 2015, 46, P. 591–595.
9. Gong M., et al. Novel synthesis and optical characterization of phosphor-converted WLED employing Ce:YAG-doped glass. J. Alloy. and Comp., 2016, 664, P. 125–132.
10. Pricha I., et al. Layered Ceramic Phosphors Based on CaAlSiN3:Eu and YAG:Ce for White Light-Emitting Diodes. J. Am. Ceram. Soc., 2016, 99 (1), P. 211–217.
11. Liu G.H., et al. Ce:YAG transparent ceramics for applications of high power LEDs: Thickness effects and high temperature performance. Mater. Lett., 2015, 139, P. 480–482.
12. Ikesue A.J. Ce:YAG Ceramic Scintillator for Electron Beam Detector. Ceram. Soc. Japan, 2000, 108 (11), P. 1020–1023.
13. Kochawattana S., Stevenson A., et al. Sintering and grain growth in SiO2 doped Nd:YAG. J. Eur. Ceram. Soc., 2008, 28 (7), P. 1527–1534.
14. Byer R.L. Progress in engineering ceramics for advanced solid-state lasers. 3rd Laser Ceramics Symposium, Paris, France, 8–10 October 2007.
15. Lu J., Ueda K., et al. Doped and undoped yttrium aluminium garnet (Y3Al5O12) nanocrystalline ceramics - a new generation of solid state laser and optical materials. Compound, 2002, 341, P. 220—225.
16. Lu J., Yagi H., et al. 110 W ceramic Nd3+:Y3Al5O12 laser. Appl. Phys. B., 2004, 79 (1), P. 25–28.
17. Chung B., Park J., Sim S. Synthesis of yttrium aluminum garnet powder by a citrate gel method. J. Ceram. Proc. Res., 2003, 4, P. 145.
18. Chen D., Jordan E.H., Gell M. Dense AluminaZirconia Coatings Using the Solution Precursor Plasma Spray Process. J. Am. Ceram. Soc., 2008, 91, P. 2759–2762.
19. Ge X., Sun Y., Liu C., Qi Wu. Influence of combustion reagent and microwave drying method on the characteristics of nano-sized Nd3+:YAG powders synthesized by the gel combustion method. J. SolGel Sci. Technol., 2009, 52, P. 179–187.
20. Bagayev S.N., Osipov V.V., et al. Fabrication of Nd3+:YAG laser ceramics with various approaches. Opt. Mater., 2012, 34, P. 1482–1487.
21. Osipov V.V., Kotov Yu.A., et al. Laser synthesis of nanopowders. Laser Phys., 2006, 16, P. 116–125.
22. Liu S., et al. Optical, luminescence and scintillation characteristics of non-stoichiometric LuAG:Ce ceramics. J. Lumin., 2016, 169, P. 72–77.
23. Blasse G., Bril A. A new phosphor for flyingspot cathoderay tubes for color television: yellowemitting Y3Al5O12Ce3+. Appl. Phys. Lett., 1967, 11 (2), P. 53.
24. Babin V., et al. Luminescence of undoped LuAG and YAG crystals. Phys. Stat. Sol. (c), 2005, 2 (1), P. 97–100.
25. Masenelli B., et al. YAG:Ce nanoparticle lightsources. Nanotechnol., 2013, 24, 165703 (7 p.).
26. Schauer P. Optimization of decay kinetics of YAG:Ce single crystal scintillators for S(T)EM electron detectors. Nucl. Instr. Methods Phys. Res. B, 2011, 269, P. 2572–2577.
27. Mares J.A., et al. Scintillation properties of Pr3+-doped lutetium and yttrium aluminum garnets: Comparison with Ce3+-doped ones. Opt. Mat., 2011, 34 (2), P. 424–427.
28. Yanagida T., et al. Evaluation of properties of YAG (Ce) ceramic scintillators. IEEE Trans. Nuc. Sci., 2005, 52 (5), P. 1836–1841.
Review
For citations:
Osipov V.V., Shitov V.A., Lukyashin K.E., Maksimov R.N., Ishchenko A.V., Platonov V.V. Ce:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical and scintillation properties. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(3):351-359. https://doi.org/10.17586/2220-8054-2017-8-3-351-359