Numerical modeling of ion exchange waveguide for the tasks of quantum computations
https://doi.org/10.17586/2220-8054-2019-10-2-147-153
Abstract
This paper is devoted to the simulation of a single-mode ion-exchange waveguide and the 3dB directional coupler for quantum chips. We performed diffusion modeling of Na+ $ K+ ions in the R2O−SnO2−SiO2 glass and optical modeling by the beam propagation method. A wavelength of 1064 nm was used corresponding to the requirements of the single-mode regime for our waveguide. Simulation of diffusion has shown that the profile of the refractive index of overlapping areas can be modeled by summing two separate profiles, which is crucial for optimizing performance. In the process of optical modeling it was possible to minimize losses on s-bends of changing the width of the bend and reducing the interaction length to zero. So we looked at many aspects of device optimization and performed a design, manufacture and characteristics simulation of a directional 3dB coupler. The overall transmittance of proposed device was evaluated as 0.96.
About the Authors
V. GerasimenkoRussian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
N. Gerasimenko
Russian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
F. Kiselev
Russian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
E. Samsonov
Russian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
S. Kozlov
Russian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
References
1. Matthews J.C.F., Politi A., Stefanov A., O’Brien J.L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photonics, 2009, 3(6), P. 346–350.
2. Crespi A., Ramponi R., Osellame R., Sansoni L., Bongioanni I., Sciarrino F., Vallone G., Mataloni P. Integrated photonic quantum gates for polarization qubits. Nature communications, 2011, 2, P. 566.
3. Politi A., Matthews J.C.F., Thompson M.G., O’Brien J.L. Integrated quantum photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(6), P. 1673–1684.
4. Politi A., Cryan M.J., Rarity J.G., Yu S., O’Brien J.L. Silica-on-silicon waveguide quantum circuits. Science, 2008, 320(5876), P. 646–649.
5. Zhang Y., McKnight L., Engin E., Watson I.M., Cryan M.J., Gu E., Thompson M.G., Calvez S., O’Brien J.L., Dawson M.D. GaN directional couplers for integrated quantum photonics. Applied Physics Letters, 2011, 99(16), P. 161119.
6. Hallett D., Foster A.P., Hurst D.L., Royall B., Kok P., Clarke E., Itskevich I.E., Fox A.M., Skolnick M.S., Wilson L.R. Electrical control of nonlinear quantum optics in a nano-photonic waveguide. Optica, 2018, 5(5), P. 644–650.
7. West B.R., Madasamy P., Peyghambarian N., Honkanen S. Modeling of ion-exchanged glass waveguide structures. Journal of NonCrystalline Solids, 2004, 347(1-3), P. 18–26.
8. Nikonorov N.V., Aseev V.A., Zhukov S.N., Ignatiev A.I., Kiselev S.S., Rokhmin A.S. WAVEGUIDE PHOTONICS. SPSU ITMO, St. Petersburg, 2008, 82 p.
9. Zhabrev V.A. Diffusion processes in a glassy coating layer. Obtaining and applying protective coatings: proceedings of the 12-th All-Union Conference on Heat-Resistant Coatings, Leningrad April 16-18, 1985, Leningrad: Science, 1987, P. 14–18.
10. Zhurikhina V.V., Petrov M.I., Sokolov K.S. and Shustova O.V. Ion-exchange characteristics of sodium-calcium-silicate glass: calculation from mode spectra. Technical Physics, 2010, 55(10), P. 1447–1452.
11. Yevick D., Hermansson B. Efficient beam propagation techniques. J. Quantum Electron., 1990, 26(1), P. 109–112.
12. Magnitsky S., Frolovtsev D., Firsov V., Gostve P., Protsenko I., Saygin M. A SPDC-based source of entangled photons and its characterization. Journal of Russian Laser Research, 2015, 36(6), P. 618–629
Review
For citations:
Gerasimenko V., Gerasimenko N., Kiselev F., Samsonov E., Kozlov S. Numerical modeling of ion exchange waveguide for the tasks of quantum computations. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):147-153. https://doi.org/10.17586/2220-8054-2019-10-2-147-153