Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations

https://doi.org/10.17586/2220-8054-2017-8-2-202-215

Abstract

We improve some recent estimates of the rate of convergence for product approximations of solution operators for linear non-autonomous Cauchy problem. The Trotter product formula approximation is proved to converge to the solution operator in the operator-norm. We estimate the rate of convergence of this approximation. The result is applied to diffusion equation perturbed by a time-dependent potential.

About the Authors

H. Neidhardt
WIAS Berlin
Germany

Mohrenstr. 39, D-10117 Berlin



A. Stephan
Humboldt Universitat zu Berlin Institut fur Mathematik
Germany

Unter den Linden 6, D-10099 Berlin



V. A. Zagrebnov
Universite d’Aix-Marseille and Institut de Mathematiques de Marseille (I2M)
France

UMR 7373, CMI – Technopole Chateau-Gombert, 13453 Marseille



References

1. Kato T. Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan, 1953, 5, P. 208–234.

2. Phillips R.S. Perturbation theory for semi-groups of linear operators. Trans. Amer. Math. Soc., 1953, 74, P. 199–221.

3. Tanabe H. Equations of evolution. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

4. Trotter H.F. On the product of semi-groups of operators. Proc. Amer. Math. Soc., 1959, 10, P. 545–551.

5. Engel K.-J., Nagel R. One-parameter semigroups for linear evolution equations. Springer-Verlag, New York, 2000.

6. Ichinose T., Tamura H. Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations. Osaka J. Math., 1998, 35 (4), P. 751–770.

7. Neidhardt H., Stephan A., Zagrebnov V.A. Convergence rate estimates for the Trotter product approximations of solution operators for non-autonomous Cauchy problems, 2016, URL: https://arxiv.org/abs/1612.06147.

8. Cachia V., Zagrebnov V.A. Operator-norm convergence of the Trotter product formula for holomorphic semigroups. J. Operator Theory, 2001, 46, P. 199–213.

9. Kato T. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

10. Neidhardt H., Zagrebnov V.A. Linear non-autonomous Cauchy problems and evolution semigroups. Adv. Differential Equations, 2009, 14 (3–4), P. 289–340.

11. Pazy A. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, 1983.

12. Pr¨uss J., Schnaubelt R. Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl., 2001, 256 (2), P. 405–430.


Review

For citations:


Neidhardt H., Stephan A., Zagrebnov V.A. On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):202-215. https://doi.org/10.17586/2220-8054-2017-8-2-202-215

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)