Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Viscoelastic properties of new mixed wormlike micelles formed by a fatty acid salt and alkylpyridinium surfactant

https://doi.org/10.17586/2220-8054-2017-8-6-732-739

Abstract

We propose a new combination of an anionic (potassium oleate) and cationic (n-octylpyridinium chloride) surfactants that are able to self-assemble into long cylindrical (wormlike) mixed micelles in water. The solutions have strong viscoelastic properties with viscosity up to 300 Pa·s and elastic modulus around 20 Pa, which are attributed to the formation of an entangled micellar network. We discover that with an increase in the molar ratio of cationic to anionic surfactant, the solutions first increase drastically their viscosity and elasticity due to the growth of micelles in length and formation of the network, but then the rheological parameters slightly decrease, possibly due to micellar branching or shortening. The addition of cationic surfactant also induces the increase of difference between scission energy and micellar electrostatic energy, which is explained both by stronger binding of surfactants within the micelle and decrease of the micellar net charge.

About the Authors

A. V. Shibaev
Department of Physics, Lomonosov Moscow State University
Russian Federation

Leninskie Gory, 1, bld. 2, Moscow, 119991



O. E. Philippova
Department of Physics, Lomonosov Moscow State University
Russian Federation

Leninskie Gory, 1, bld. 2, Moscow, 119991



References

1. Rehage H., Hoffmann H. Rheological properties of viscoelastic surfactant systems. J. Phys. Chem., 1988, 92(16), P. 4712–4719.

2. Khatory A., Lequeux F., Kern F., Candau S.J. Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content. Langmuir, 1993, 9(6), P. 1456–1464.

3. Koehler R.D., Raghavan S.R., Kaler E.W. Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J. Phys. Chem. B, 2000, 104(47), P. 11035–11044.

4. Raghavan S.R., Fritz G., Kaler E.W. Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir, 2002, 18(10), P. 3797–3803.

5. Schubert B.A., Kaler E.W., Wagner N.J. The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir, 2003, 19(10), P. 4079–4089.

6. Shibaev A.V., Abrashitova K.A., Kuklin A.I., Orekhov A.S., Vasiliev A.V., Iliopoulos I., Philippova O.E. Viscoelastic synergy and microstructure formation in aqueous mixtures of nonionic hydrophilic polymer and charged wormlike surfactant micelles. Macromolecules, 2017, 50(1), P. 339–348.

7. Shibaev A.V., Kuklin A.I., Philippova O.E. Effect of polymer on the arrangement of mixed anionic/cationic wormlike surfactant micelles revealed by SANS. J. Phys.: Conf. Ser., 2017, 848, P. 012006.

8. Molchanov V.S., Shashkina Y.A., Philippova O.E., Khokhlov A.R. Viscoelastic properties of aqueous surfactant (potassium oleate) solutions. Colloid J., 2005, 67(5), P. 606–609.

9. Dreiss C.A. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter, 2007, 3(8), P. 956–970.

10. Chu Z., Dreiss C.A., Feng Y. Smart wormlike micelles. Chem. Soc. Rev., 2013, 42(17), P. 7174–7203.

11. Koroleva S.V., Victorov A.I. Modeling of the effects of ion specificity on the onset and growth of ionic micelles in a solution of simple salts. Langmuir, 2014, 30(12), P. 3387–3396.

12. Shibaev A.V., Tamm M.V., Molchanov V.S., Rogachev A.V., Kuklin A.I., Dormidontova E.E., Philippova O.E. How a viscoelastic solution of wormlike micelles transforms into a microemulsion upon absorption of hydrocarbon: new insight. Langmuir, 2014, 30(13), P. 3705–3714.

13. Shibaev A.V., Molchanov V.S., Philippova O.E. Rheological behavior of oil-swollen wormlike surfactant micelles. J. Phys. Chem. B, 2015, 119(52), P. 15938–15946.

14. Shibaev A.V., Makarov A.V., Aleshina A.L., Rogachev A.V., Kuklin A.I., Philippova O.E. Structure and oil responsiveness of viscoelastic fluids based on mixed anionic/cationic wormlike surfactant micelles. J. Phys.: Conf. Ser., 2017, 848, P. 012019.

15. Kwiatkowski A.L., Molchanov V.S., Orekhov A.S., Vasiliev A.L., Philippova O.E. Impact of salt co- and counterions on rheological properties and structure of wormlike micellar solutions. J. Phys. Chem. B, 2016, 120(49), P. 12547–12556.

16. Yang J. Viscoelastic wormlike micelles and their applications. Curr. Opin. Colloid Interface Sci., 2002, 7(5-6), P. 276–281.

17. Philippova O.E., Khokhlov A.R. Smart polymers for oil production. Petroleum Chemistry, 2010, 50(4), P. 266–270.

18. Philippova O.E., Shibaev A.V., Muravlev D.A., Mityuk D.Yu. Structure and rheology of solutions and gels of stiff polyelectrolyte at high salt concentration. Macromolecules, 2016, 49(16), P. 6031–6040.

19. Fukuda H., Goto A., Yoshioka H., Goto R., Morigaki K., Walde P. An electron spin resonance study of the pH-induced transformation of micelles to vesicles in an aqueous oleic acid/oleate system. Langmuir, 2001, 17(14), P. 4223–4231.

20. Flood C., Dreiss C.A., Croce V., Cosgrove T., Karlsson G. Wormlike micelles mediated by polyelectrolyte. Langmuir, 2005, 21(17), P. 7646–7652.

21. Raghavan S.R., Kaler E.W. Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir, 2001, 17(17), P. 300–306.

22. Ziserman L., Abezgauz L., Ramon O., Raghavan S.R., Danino D. Origins of the viscosity peak in wormlike micellar solutions. 1. Mixed catanionic surfactants. A cryo-transmission electron microscopy study. Langmuir, 2009, 25(18), P. 10483–10489.

23. Magid L.J. The surfactant-polyelectrolyte analogy. J. Phys. Chem. B, 1998, 102(21), P. 4064–4074.

24. Pimenta P., Pashkovski E.E. Rheology of viscoelastic mixed surfactant solutions: effect of scission on nonlinear flow and rheochaos. Langmuir, 2006, 22(9), P. 3980–3987.

25. Granek R., Cates M.E. Stress relaxation in living polymers: results from a Poisson renewal model. J. Chem. Phys., 1992, 96(6), P. 4758–4767.

26. Siriwatwechakul W., LaFleur T., Prud’homme R.K., Sullivan P. Effects of organic solvents on the scission energy of rodlike micelles. Langmuir, 2004, 20(21), P. 8970–8974.

27. Molchanov V.S., Philippova O.E. Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains. J. Colloid Interface Sci., 2013, 394, P. 353–359.

28. Cox W.P., Merz E.H. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 1958, 28, P. 619–622.

29. Fisher P., Rehage H. Rheological master curves of viscoelastic surfactant solutions by varying the solvent viscosity and temperature. Langmuir, 1997, 13(26), P. 7012–7020.

30. Soltero A., Puig J.E., Manero O. Rheology of the cetyltrimethylammonium tosilate-water system. 2. Linear viscoelastic regime. Langmuir, 1996, 12(11), P. 2654–2662.

31. Shukla A., Fuchs R., Rehage H. Quasi-anomalous diffusion processes in entangled solutions of wormlike surfactant micelles. Langmuir, 2006, 22(7), P. 3000–3006.


Review

For citations:


Shibaev A.V., Philippova O.E. Viscoelastic properties of new mixed wormlike micelles formed by a fatty acid salt and alkylpyridinium surfactant. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):732-739. https://doi.org/10.17586/2220-8054-2017-8-6-732-739

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)