Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Kolmogorov equation for Bloch electrons and electrical resistivity models for nanowires

https://doi.org/10.17586/2220-8054-2017-8-2-247-259

Аннотация

The problem of a nanowires conductivity is studied from a kinetic point of view for quasiclassical Bloch electrons in an electric field. Few statements of problems with cylindrical symmetry for the integro-differential Kolmogorov equation are formulated: the dynamic Cauchy problem and two stationary boundary regime ones. The first is for an empty cylinder with scattering of the conduction electrons on walls, the second takes into account scattering on defects inside the wire. The integro-differential equations are transformed to integral ones and solved iteratively. There are two types of expansions with the leading terms in the right and left sides. The iteration series is constructed and its convergence studied.

Об авторе

S. Leble
Immanuel Kant Baltic Federal University
Россия


Список литературы

1. Heremans J., Thrush C.M., et al. Bismuth nanowire arrays: Synthesis, galvanomagnetic properties. Phys. Rev. B, 2000, 61, P. 2921–2930.

2. Hong K., Yang F.Y., et al. Giant positive magnetoresistance of Bi nanowire arrays in high magnetic fields. J. Appl. Phys. A, 1999, 85, P. 6184–6186.

3. Lin Y.-M., Cronin S.B., et al. Transport properties of Bi nanowire arrays. Appl. Phys. Lett., 2000, 76, P. 3944–3946.

4. Gal’perin Y.M. Introduction to Modern Solid State Physics. FYS 448, Oslo, 2009.

5. Kolmogoroff A. Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung. ¨ Math. Ann., 1931, 104, P. 415.

6. Kolchuzhkin A.M., Uchaikin V.V. Introduction into the Theory of Particle Penetration through a Matter. Moscow, Atomizdat, 1978 (in Russian).

7. Buzdin A., Leble S. Lidar Problem Solution in Double-Scattering Approximation. arXiv:1112.3297v1 [math-ph], 2011.

8. Guarao M., Leble S. Modeling of X-ray attenuation via photon statistics evolution. TASK Quarterly, 2014, 18 (2), P. 187–203.

9. Botman S., Leble S. Bloch Wave - ZRP Scattering as a Key Element of Solid State Physics Computation: 1D Example. TASK Quarterly, 2016, 20 (2), P. 185–194.

10. Kailasvuori J., L¨uffe M.C. Quantum corrections in the Boltzmann conductivity of graphene and their sensitivity to the choice of formalism. J. Stat. Mech., 2010, P. 06024.

11. Popov I.Y., Kurasov P.A., et al. A distinguished mathematical physicist Boris S. Pavlov. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7, P. 782–788.


Рецензия

Для цитирования:


  . Наносистемы: физика, химия, математика. 2017;8(2):247-259. https://doi.org/10.17586/2220-8054-2017-8-2-247-259

For citation:


Leble S.B. Kolmogorov equation for Bloch electrons and electrical resistivity models for nanowires. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):247-259. https://doi.org/10.17586/2220-8054-2017-8-2-247-259

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)