Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Error analysis in circuits building at the quantum computing platform IBM Quantum Experience

https://doi.org/10.17586/2220-8054-2017-8-2-272-276

Abstract

There are many quantum computing systems, some of which are still being developed today. To develop quantum calculation systems, IBM provides access to the 5-qubit quantum computer ‘IBM Quantum Experience’. Quantum computers must deal with the loss of information due to environmental disturbances. Quantum systems cannot be completely isolated. Noise can be a cause of different errors in the quantum circuits. In this work, we observe distortions in quantum circuits and investigate the noise stability of different quantum gates. We investigate a method for calculating the quantum state of the superconducting qubit, used in ‘IBM Quantum Experience’, after an interaction with a quantum operator.

About the Author

E. O. Samsonov
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Zurek W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 2003, 75, P. 715–775.

2. Blum K. Density matrix theory and applications. Plenum press, New York, 1981, 242 pp.

3. Gardiner C. Stochastic methods for natural sciences. Springer Science, New York, 2004, 538 pp.

4. Koch J., Yu T.M., Gambetta J., Houck A. A., Schuster D. I., Majer J., Blais A., Devoret M. H., Girvin S. M., Schoelkopf R.J. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76, P. 042319/1–19.

5. Makhlin Yu. Quantum coherence in mesoscopic superconducting systems and quantum computing. Doctor dissertation, Landau Institute for Theoretical Physics, Moscow, 2004.

6. Yoshihara F., Harrabi K., Niskanen A.O., Nakamura Y., Tsai J.S. Decoherence of flux qubits due to 1/f flux noise. Phys. Rev., 2006, 97, P. 167001.

7. Averin D.V., Ruggiero B., Silvestrini P. Macroscopic Quantum Coherence and Quantum Computing. Springer Science and Business Media, New York, 2001, 460 pp.

8. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2001, 670 pp.

9. Aharonov D., Kitaev A., Nisan N. Quantum circuits with mixed states. Proceedings of ‘The thirtieth annual ACM symposium on Theory of computing’. Dallas, May 24–26, ACM New York, 1998, P. 20–30.

10. Kitaev A.Yu. Quantum computations: algorithms and error correction. Uspekhi Mat. Nauk, 1997, 52(5), P. 53–112.

11. Gubaidullina K.V., Chivilikhin S.A. Theoretical research of the distortion of quantum circuit in Grover’s algorithm. Journal of Physics. Conference Series, 2016, 735, P. 012074-1–012074-6.

12. Retrieved from https://quantumexperience.ng.bluemix.net/qstage/#/community.

13. Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H. Elementary gates for quantum computation. Phys. Rev. A, 1995, 52, P. 3457–3467.

14. Makhlin Y., Shnirman A. Dephasing of Solid-State Qubits at Optimal Points. Phys. Rev., 2004, 92, P. 178301.

15. Koistinen O-P., Maras E., Vehtari A., J’onsson H. Minimum energy path calculations with Gaussian process regression. Nanosystems: Physics, Chemistry, Mathematics. 2016, 7(6), P. 925–935.


Review

For citations:


Samsonov E.O. Error analysis in circuits building at the quantum computing platform IBM Quantum Experience. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):272-276. https://doi.org/10.17586/2220-8054-2017-8-2-272-276

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)