Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Near-field optical microscopy of surface plasmon polaritons excited by silicon nanoantenna

https://doi.org/10.17586/2220-8054-2018-9-5-609-613

Abstract

An optical nanoantenna is a device that transforms far-field electromagnetic radiation into near-field and vice versa. Naturally, it can serve as a conduit between free space light and localized optical modes, including surface waves. With the recent rise of all-dielectric nanophotonics, nanoantennas made of high-index materials were found to offer unparalleled means for manipulation of light due to presence of equally strong electric and magnetic responses in the visible spectral range. Here, we demonstrate excitation of surface plasmon polaritons by single silicon nanosphere on gold layer measured by means of scanning near-field optical microscopy. The interference patterns observed in the measured near-field maps allow us to retrieve information on directivity and relative excitation efficiency of surface plasmon polariton in the longer wavelength part of the visible spectral range. Our results demonstrate that all-dielectric nanoantennas could prove to be a valuable tool for controlling directivity and efficiency of excitation of surface waves. 

About the Authors

I. S. Sinev
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



F. E. Komissarenko
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



I. S. Mukhin
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



M. I. Petrov
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



I. V. Iorsh
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



P. A. Belov
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



A. K. Samusev
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Evlyukhin A. B., Novikov S. M., Zywietz U., Eriksen R. L., Reinhardt C., Bozhevolnyi S. I., Chichkov B. N. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano letters, 2012, 12(7), P. 3749–3755.

2. Kuznetsov A. I., Miroshnichenko A. E., Fu Y. H., Zhang J., LukYanchuk B. Magnetic light. Scientific reports, 2012, 2, P. 492.

3. Fu Y. H., Kuznetsov A. I., Miroshnichenko A. E., Yu Y. F., Lukyanchuk B. Directional visible light scattering by silicon nanoparticles. Nature communications, 2013, 4, P. 1527.

4. Paniagua-Domnguez R., Yu Y. F., Miroshnichenko A. E., Krivitsky L. A., Fu Y. H., Valuckas V., Gonzaga L., Toh Y. T., Kay A. Y. S., LukYanchuk B., Kuznetsov A. I. Generalized Brewster effect in dielectric metasurfaces. Nature communications, 2016, 7, P. 10362.

5. Evlyukhin A. B., Bozhevolnyi S. I. Resonant unidirectional and elastic scattering of surface plasmon polaritons by high refractive index dielectric nanoparticles. Physical Review B, 2015, 92(24), P. 245419.

6. Dmitriev P. A., Makarov S. V., Milichko V. A., Mukhin I. S., Gudovskikh A. S., Sitnikova A. A., Samusev A. K., Krasnok A. E., Belov P. A. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics. Nanoscale, 2016, 8(9), P. 5043–5048.

7. Denisyuk A. I., Komissarenko F. E., Mukhin I. S. Electrostatic pick-and-place micro/nanomanipulation under the electron beam. Microelectronic Engineering, 2014, 121, P. 15–18.

8. Miroshnichenko A. E., Evlyukhin A. B., Kivshar Y. S., Chichkov B. N. Substrate-Induced Resonant Magnetoelectric Effects for Dielectric Nanoparticles. ACS Photonics, 2015, 2(10), P. 1423–1428.

9. Born M., Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013, 836 p. SPP from silicon nanoantenna 613

10. Sinev I. S., Bogdanov A. A., Komissarenko F. E., Frizyuk K. S., Petrov M. I., Mukhin I. S., Makarov S. V., Samusev A. K., Lavrinenko A. V., Iorsh I. V. Chirality driven by magnetic dipole response for demultiplexing of surface waves. Laser & Photonics Reviews, 2017, 11(5), P. 1700168.

11. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik A Hadrons and nuclei, 1968, 216(4), P. 398–410.

12. Woessner A., Lundeberg M. B., Gao Y., Principi A., Alonso-Gonzalez P., Carrega M., Watanabe K., Taniguchi T., Vignale G., Polini M., Hone J., Hillenbrand R., Koppens F. H. L. Highly confined low-loss plasmons in grapheneboron nitride heterostructures. Nature materials, 2015, 14(4), P. 421.

13. Permyakov D. V., Mukhin I. S., Shishkin I. I., Samusev A. K., Belov P. A., Kivshar Y. S. Mapping electromagnetic fields near a subwavelength hole. JETP letters, 2014, 99(11), P. 622–626.

14. Bethe H. A. Theory of diffraction by small holes. Physical review, 1944, 66(7-8), P. 163.

15. Johnson P. B., Christy R. W. Optical constants of the noble metals. Physical review B, 1972, 6(12), P. 4370.

16. Sinev I., Iorsh I., Bogdanov A., Permyakov D., Komissarenko F., Mukhin I., Samusev A., Valuckas V., Kuznetsov A. I., Luk’yanchuk B. S., Miroshnichenko A. E., Kivshar Y. S. Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films. Laser & Photonics Reviews, 2016, 10(5), P. 799–806.


Review

For citations:


Sinev I.S., Komissarenko F.E., Mukhin I.S., Petrov M.I., Iorsh I.V., Belov P.A., Samusev A.K. Near-field optical microscopy of surface plasmon polaritons excited by silicon nanoantenna. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5):609-613. https://doi.org/10.17586/2220-8054-2018-9-5-609-613

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)