Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Level crossings of eigenvalues of the Schrodinger Hamiltonian of the isotropic harmonic¨ oscillator perturbed by a central point interaction in different dimensions

https://doi.org/10.17586/2220-8054-2018-9-2-179-186

Abstract

In this brief presentation, some striking differences between level crossings of eigenvalues in one dimension (harmonic or conic oscillator with a central nonlocal δ0-interaction) or three dimensions (isotropic harmonic oscillator with a three-dimensional delta located at the origin) and those occurring in the two-dimensional analogue of these models will be highlighted.

About the Authors

S. Fassari
Departamento de F´ısica Teorica, At´omica y´ Optica; CERFIM; Dipartimento di Fisica Nucleare, Subnucleare e delle Radiazioni, Univ. degli Studi Guglielmo Marconi
Spain

U. Valladolid, 47011 Valladolid

PO Box 1132, Via F. Rusca 1, CH-6601 Locarno, Switzerland

Via Plinio 44, I-00193 Rome, Italy



M. Gadella
Departamento de F´ısica Teorica, At´omica y´ Optica
Spain

U. Valladolid, 47011 Valladolid



M. L. Glasser
Departamento de F´ısica Teorica, At´omica y´ Optica; Department of Physics, Clarkson University
Spain

U. Valladolid, 47011 Valladolid

Potsdam, NY, 13699 USA



L. M. Nieto
Departamento de F´ısica Teorica, At´omica y´ Optica
Spain

U. Valladolid, 47011 Valladolid

 



F. matfa62@gmail.com
CERFIM; Dipartimento di Fisica Nucleare, Subnucleare e delle Radiazioni, Univ. degli Studi Guglielmo Marconi
Switzerland

PO Box 1132, Via F. Rusca 1, CH-6601 Locarno

Via Plinio 44, I-00193 Rome, Italy



References

1. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics (AMS Chelsea Series), 2nd edition, American Mathematical Society, Providence, RI, 2004.

2. Albeverio S., Kurasov P. Singular Perturbations of Differential Operators. Publishing House, Cambridge UK, 2000.

3. Albeverio S., Dabrowski L., Kurasov P. Symmetries of Schrodinger operators with point interactions.¨ Lett. Math. Phys., 1998, 45, P. 33–47.

4. Exner P., Neidhardt H., Zagrebnov V.A. Potential approximations to δ0: an inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys., 2001, 224, P. 593–612.

5. Fassari S., Rinaldi F. On the spectrum of the Schrodinger Hamiltonian with a particular configuration of three point interactions.¨ Rep. Math. Phys., 2009, 64, P. 367–393.

6. Albeverio S., Fassari S., Rinaldi F. The Hamiltonian of the harmonic oscillator with an attractive δ0-interaction centred at the origin as approximated by the one with a triple of attractive δ-interactions. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 025302.

7. Fassari S., Inglese G. Spectroscopy of a three-dimensional isotropic harmonic oscillator with a delta-type perturbation. Helv. Phys. Acta, 1996, 69, P. 130–140.

8. Bru¨ning J., Geyler V., Lobanov I. Spectral properties of a short-range impurity in a quantum dot. J. Math. Phys., 2004, 45, P. 1267–1290.

9. Albeverio S., Fassari S., Rinaldi F. Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive δ-impurities symmetrically situated around the origin II. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (5), P. 803–815.

10. Albeverio S., Fassari S., Rinaldi F. Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive δ-impurities symmetrically situated around the origin. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (2), P. 268–289.

11. Albeverio S., Fassari S., Rinaldi F. A remarkable spectral feature of the Schrodinger Hamiltonian of the harmonic oscillator perturbed¨ by an attractive δ0-interaction centred at the origin: double degeneracy and level crossing. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 385305.

12. Fassari S., Gadella M., Glasser M.L., Nieto L.M. On the spectrum of the Schrodinger Hamiltonian of the one-dimensional conic oscillator¨ perturbed by a point interaction. ArXiv preprint 1706.04916, 2017.

13. Fassari S., Gadella M., Glasser M.L., Nieto L.M. Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity. Annals of Physics, 2018, 389, P. 48–62.

14. Cheon T., Shigehara T. Fermion-Boson duality of one-dimensional quantum particles with generalized contact interactions. Phys. Rev. Lett., 1999, 82, 2536.

15. Fassari S., Inglese G. On the spectrum of the harmonic oscillator with a delta-type perturbation. Helv. Phys. Acta, 1994, 67, P. 650–659.

16. Fassari S., Inglese G. On the spectrum of the harmonic oscillator with a delta-type perturbation. II. Helv. Phys. Acta, 1997, 70, P. 858–865.

17. Fassari S., Rinaldi F. On the spectrum of the Schrodinger Hamiltonian of the one-dimensional harmonic oscillator perturbed by two¨ identical attractive point interactions. Rep. Math. Phys., 2012, 69, P. 353–370.

18. Lorinczi J., Ma¨ lecki J. Spectral properties of the massless relativistic harmonic oscillator. J. Diff. Eq., 2012, 253, P. 2846–2871.

19. Tusek M. Analysis of Two-Dimensional Quantum Models with Singular Potentials, Diploma Thesis, Czech Technical University, Prague, 2006.

20. Tunali S. Point Interactions in Quantum Mechanics, MS Thesis, Izmir Institute of Technology, Izmir, 2014.

21. Reed M., Simon B. Methods in Modern Mathematical Physics IV – Analysis of Operators, Academic Press, NY, 1978.


Review

For citations:


Fassari S., Gadella M., Glasser M.L., Nieto L.M., matfa62@gmail.com F. Level crossings of eigenvalues of the Schrodinger Hamiltonian of the isotropic harmonic¨ oscillator perturbed by a central point interaction in different dimensions. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):179–186. https://doi.org/10.17586/2220-8054-2018-9-2-179-186

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)