Synthesis and quantum yield investigations of the Sr1−x−yPrxYbyF2+x+y luminophores for photonics
https://doi.org/10.17586/2220-8054-2018-9-5-663-668
Abstract
Single-phase praseodymium- and ytterbium-doped strontium fluoride solid solutions were prepared by co-precipitation from aqueous nitrate solutions followed by annealing at 600 ◦C. Based on EDX analysis, the content of rare-earth elements in solid phase is slightly higher rather than in initial aqueous solution. All the characteristic praseodymium and ytterbium luminescent bands were present. The most intense luminescence in 800 – 1100 nm range was registered in SrF2:Pr (0.1 mol.%):Yb (10.0 mol.%) solid solution. Using the integrating sphere, the values of the quantum yield were estimated. The maximum quantum yield was 1.1 % for Sr0.9495Pr0.0005Yb0.05F2.0505 solid solution.
Keywords
About the Authors
S. V. KuznetsovRussian Federation
38 Vavilova str., Moscow, 119991
V. Yu. Proydakova
Russian Federation
38 Vavilova str., Moscow, 119991
O. A. Morozov
Russian Federation
18 Kremljovskaya, Kazan, 420008
V. G. Gorieva
Russian Federation
18 Kremljovskaya, Kazan, 420008
M. A. Marisov
Russian Federation
18 Kremljovskaya, Kazan, 420008
V. V. Voronov
Russian Federation
38 Vavilova str., Moscow, 119991
A. D. Yapryntsev
Russian Federation
31 Leninsky pr., Moscow,119991
V. K. Ivanov
Russian Federation
31 Leninsky pr., Moscow,119991
A. S. Nizamutdinov
Russian Federation
18 Kremljovskaya, Kazan, 420008
V. V. Semashko
Russian Federation
18 Kremljovskaya, Kazan, 420008
P. P. Fedorov
Russian Federation
38 Vavilova str., Moscow, 119991
References
1. Green M.A., Bremner S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Mater, 2017, 16, P. 23–34.
2. Huang X., Han S., Huang W., Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev., 2013, 42, P. 173–201.
3. Han G., Zhang S., Boix P.P., Wong L.H., Sun L., Lien S.Y. Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, P. 246–291.
4. Engelhart P., Wendt J., Schulze A., Klenke C., Mohr A., Petter K., Stenzel F., Hornlein S., Kauert M., Jungh ¨ anel M., Barkenfelt B., ¨ Schmidt S., Rychtarik D., Fischer M., M¨uller J.W., Wawer P. R&D pilot line production of multi-crystalline Si solar cells exceeding cell efficiencies of 18 %. Energy Procedia, 2011, 8, P. 313–317.
5. Yang J., Myong S.Y., Lim K.S. Novel ultrathin LiF interlayers for efficient light harvesting in thin-film Si tandem solar cells. Solar Energy, 2015, 114, P. 259–267.
6. Ren W., Tian G., Jian S., Gu Z., Zhou L., Yan L., Jin S., Yin W., Zhao Y. Tween coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Advances, 2012, 2, P. 7037–7041.
7. Zhao J., Jin D., Schartner E.P., Lu Y., Liu Y., Zvyagin A.V., Zhang L., Dawes J.M., Xi P., Piper J.A., Goldys E.M., Monro T.M. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotechnology, 2013, 8, P. 729–734.
8. Conference book of 1st Conference and spring school on properties, design and applications of upconverting nanomaterials, Wroclaw, Poland, 23-27 May 2016.
9. Kuznetsov S.V., Yasyrkina D.S., Ryabova A.V., Pominova D.V., Voronov V.V., Baranchikov A.E., Ivanov V.K., Fedorov P.P. αNaYF4:Yb:Er@AlPc(C2O3)4 -based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation. J. Fluor. Chem., 2016, 182, P. 104–108.
10. Pak A.M., Ermakova J.A., Kuznetsov S.V., Ryabova A.V., Pominova D.V., Voronov V.V. Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based up-conversion luminophores. J. Fluor. Chem., 2017, 194, P. 16–22.
11. Rozhnova Yu.A., Luginina A.A., Voronov V.V., Ermakov R.P., Kuznetsov S.V., Ryabova A.V., Pominova D.V., Arbenina V.V., Osiko V.V., Fedorov P.P. White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. Mater. Chem. Phys., 2014, 148, P. 201–207.
12. Rozhnova Yu.A., Kuznetsov S.V., Luginina A.A., Voronov V.V., Ryabova A.V., Pominova D.V., Ermakov R.P., Usachev V.A., Kononenko N.E., Baranchikov A.E., Ivanov V.K., Fedorov P.P. New Sr1−x−yRx(NH4)yF2+x−y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Mater. Chem. Phys., 2016, 172, P. 150–157.
13. Fedorov P.P., Kuznetsov S.V., Mayakova M.N., Voronov V.V., Ermakov R.P., Baranchikov A.E., Osiko V.V. Coprecipitation from aqueous solutions to prepare binary fluorides. Rus. J. Inorg. Chem., 2011, 56, P. 1525–1531.
14. Mayakova M.N., Luginina A.A., Kuznetsov S.V., Voronov V.V., Ermakov R.P., Baranchikov A.E., Ivanov V.K., Karban O.V., Fedorov P.P. Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueous solutions. Mendeleev Communications, 2014, 24, P. 360–362.
15. Fedorov P.P., Mayakova M.N., Maslov V.A., Baranchikov A.E., Ivanov V.K., Pynenkov A.A., Uslamina M.A., Nishchev K.N. The solubility of sodium and potassium fluorides in the strontium fluoride. Nanosystems: PHYSICS, CHEMISTRY, MATHEMATICS, 2017, 8, P. 830–834.
16. Ritter B., Haida P., Krahl T., Scholz G., Kemnitz E. Core–shell metal fluoride nanoparticles via fluorolytic sol–gel synthesis – a fast and efficient construction kit. J. Mater. Chem., 2017, C5, P. 5444–5450.
17. Rakov N., Guimaraes R.B., Franceschini D.F., Maciel G.S. Er:SrF ˜ 2 luminescent powders prepared by combustion synthesis. Mater. Chem. Phys., 2012, 135, P. 317–321.
18. Peng J., Hou S., Liu X., Feng J., Yu X., Xing Y., Su Z. Hydrothermal synthesis and luminescence properties of hierarchical SrF2 and SrF2:Ln3+ (Ln = Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures. Mater. Res. Bull., 2012, 47, P. 328–332.
19. Yagoub M.Y.A., Swart H.C., Noto L.L., O’Connel J.H., Lee M.E., Coetsee E. The effects of Eu-concentrations on the luminescent properties of SrF2:Eu nanophosphor. J. Lumin., 2014, 156, P. 150–156.
20. Yagoub M.Y.A., Swart H.C., Noto L.L., Bergman P., Coetsee E. Surface Characterization and Photoluminescence Properties of Ce3+, Eu Co-Doped SrF2 Nanophosphor. Materials, 2015, 8, P. 2361–2375.
21. Ryabova A.V., Pominova D.V., Krut‘ko V.A., Komova M.G., Loschenov V.B. Spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: benefit for cancer diagnostics by upconversion fluorescence and radiosensitive methods. Photonics&Lasers in Medicine, 2013, 2, P. 117–128.
22. Kuznetsov S., Ermakova Yu., Voronov V., Fedorov P., Busko D., Howard I.A., Richards B., Turshatov A. Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. J. Mater. Chem., 2018, C6, P. 598–604.
23. Fedorov P.P., Sobolev B.P. Concentration dependence of unit-cell parameters of phases M1−xRxF2+x with the fluorite structure. Sov. Phys. Crystallogr., 1992, 37, P. 651–656.
24. Dieke G.H., Crosswhite H.M. The spectra of the doubly and triply ionized rare earths. Appl. Opt., 1963, 2, P. 675–686.
25. Kuzmanoski A., Pankratov V., Feldmann C. Energy transfer of the quantum-cutter couple Pr3+–Mn2+ in CaF2:Pr3+, Mn2+ nanoparticles. J. Lumin., 2016, 179, P. 555–561.
26. Meijerink A., Wegh R., Vergeer P., Vlugt T. Photon management with lanthanides. Opt. Mater., 2006, 28, P. 575–581.
27. Yagoub M.Y.A., Swart H.C., Coetsee E. Concentration quenching, surface and spectral analyses of SrF2:Pr3+ prepared by different synthesis techniques. Opt. Mater., 2015, 42, P. 204–209.
Review
For citations:
Kuznetsov S.V., Proydakova V.Yu., Morozov O.A., Gorieva V.G., Marisov M.A., Voronov V.V., Yapryntsev A.D., Ivanov V.K., Nizamutdinov A.S., Semashko V.V., Fedorov P.P. Synthesis and quantum yield investigations of the Sr1−x−yPrxYbyF2+x+y luminophores for photonics. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5):663-668. https://doi.org/10.17586/2220-8054-2018-9-5-663-668