La and Co-based materials for ammonia decomposition: activity, stability and structural changes
Abstract
The La0.9Sr0.1Sc0.9Co0.1O3-δ (LS) and La0.9Sr0.1CoO3-δ (LC) phases and composite materials based on them were synthesized. There are data in the literature on the activity of pure or modified forms of LC in ammonia decomposition, but there are no data on the activity of the LS phase and LS-LC composites. Therefore, the stability and activity of LS-LC composites and initial LS and LC in ammonia decomposition were investigated. The best result in the decomposition of ammonia at 700 °C and WHSV of 60 000 ml NH3·gcat-1·h-1 shows LC – 99%, the worst LS – 80%. Under the same conditions, the activity of samples LC, 40LS-60LC and 50LS-50LC remains unchanged for 40 hours. It was found that during ammonia decomposition, the LC phase decomposes to form cobalt and La(OH)3 nanoparticles, but the LS phase does not undergo significant changes, which is confirmed by X-ray diffraction, IR spectroscopy, Raman spectroscopy and TEM.
Keywords
About the Author
Vadim Andreevich BorisovRussian Federation
References
1. Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: Review and recommendation. Int J Hydrogen Energy. 2019, 44(29), 15072–15086.
2. Yan Z, Yin K, Xu M, Fang N, Yu W, Chu Y, et al. Photocatalysis for synergistic water remediation and H2 production: A review. Chem Eng J. 2023, 472, 145066.
3. Aravindan M, Praveen Kumar G. Hydrogen towards sustainable transition: A review of production, economic, environmental impact and scaling factors. Results Eng. 2023, 20, 101456.
4. El-Shafie M. Hydrogen production by water electrolysis technologies: A review. Results Eng. 2023, 20, 101426.
5. Egerer J, Grimm V, Niazmand K, Runge P. The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany.” Appl Energy. 2023, 334, 120662.
6. Wang B, Ni M, Jiao K. Green ammonia as a fuel. Sci Bull. 2022, 67(15), 1530–1534.
7. Jiang L, Fu X. An Ammonia–Hydrogen Energy Roadmap for Carbon Neutrality: Opportunity and Challenges in China. Engineering. 2021, 7(12), 1688–1691.
8. Borisov VA, Sidorchik IA, Temerev VL, Simunin MM, Leont’eva NN, Muromtsev I V, et al. Ru-Ba/ANF catalysts for ammonia decomposition: Support carbonization influence. Int J Hydrogen Energy [Internet]. 2023, 48(59), 22453–61. Available from: https://www.sciencedirect.com/science/article/pii/S0360319923012533
9. Hayashi F, Toda Y, Kanie Y, Kitano M, Inoue Y, Yokoyama T, et al. Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:e−. Chem Sci [Internet]. 2013, 4(8), 3124–3130. Available from: http://dx.doi.org/10.1039/C3SC50794G
10. Kocer T, Oztuna FES, Kurtoğlu SF, Unal U, Uzun A. Graphene aerogel-supported ruthenium nanoparticles for COx-free hydrogen production from ammonia. Appl Catal A Gen [Internet]. 2021, 610, 117969. Available from: https://www.sciencedirect.com/science/article/pii/S0926860X20305627
11. Borisov VA, Iost KN, Temerev VL, Simunin MM, Leont’eva NN, Mikhlin YL, et al. Ammonia decomposition Ru catalysts supported on alumina nanofibers for hydrogen generation. Mater Lett. 2022, 306, 130842.
12. Borisov VA, Iost KN, Temerev VL, Leont’eva NN, Muromtsev IV, Arbuzov AB, et al. The Influence of the Specific Surface Area of the Carbon Support on the Activity of Ruthenium Catalysts for the Ammonia-Decomposition Reaction. Kinet Catal. 2018, 59(2), 136–142.
13. Borisov VA, Iost KN, Petrunin DA, Temerev VL, Muromtsev I V, Arbuzov AB, et al. Effect of the Modifier on the Catalytic Properties and Thermal Stability of Ru–Cs(Ba)/Sibunit Catalyst for Ammonia Decomposition. Kinet Catal [Internet]. 2019, 60, 372–379 Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-85067447071&partnerID=MN8TOARS
14. Yamazaki K, Matsumoto M, Ishikawa M, Sato A. NH3 decomposition over Ru/CeO2-PrOx catalyst under high space velocity conditions for an on-site H2 fueling station. Appl Catal B Environ. 2023, 325, 122352.
15. Le TA, Do QC, Kim Y, Kim T-W, Chae H-J. A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition. Korean J Chem Eng [Internet]. 2021, 38(6), 1087–1103. Available from: https://doi.org/10.1007/s11814-021-0767-7
16. Sun S, Jiang Q, Zhao D, Cao T, Sha H, Zhang C, et al. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production. Renew Sustain Energy Rev. 2022, 169, 112918.
17. Bell TE, Torrente-Murciano L. H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Top Catal [Internet]. 2016, 59(15), 1438–1457. Available from: https://doi.org/10.1007/s11244-016-0653-4
18. Lucentini I, Garcia X, Vendrell X, Llorca J. Review of the Decomposition of Ammonia to Generate Hydrogen. Ind Eng Chem Res. 2021 May, 60(51), 18560–18611.
19. Yakovenko RE, Krasnyakova T V, Saliev AN, Shilov MA, Volik A V, Savost’yanov AP, et al. Ammonia Decomposition over Cobalt-Based Silica-Supported Fischer-Tropsch Synthesis Catalysts. Kinet Catal. 2023, 64(2), 180–190.
20. Han X, Hu M, Yu J, Xu X, Jing P, Liu B, et al. Dual confinement of LaCoOx modified Co nanoparticles for superior and stable ammonia decomposition. Appl Catal B Environ. 2023, 328, 122534.
21. Podila S, Alhamed YA, AlZahrani AA, Petrov LA. Hydrogen production by ammonia decomposition using Co catalyst supported on Mg mixed oxide systems. Int J Hydrogen Energy. 2015, 40(45), 15411–15422.
22. Podila S, Driss H, Zaman SF, Alhamed YA, AlZahrani AA, Daous MA, et al. Hydrogen generation by ammonia decomposition using Co/MgO–La2O3 catalyst: Influence of support calcination atmosphere. J Mol Catal A Chem. 2016, 414, 130–139.
23. Chandrappa SG, Moni P, Chen D, Karkera G, Prakasha KR, Caruso RA, et al. The influence of ruthenium substitution in LaCoO3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries. J Mater Chem A. 2020, 8(39), 20612–20620.
24. Onrubia-Calvo JA, Pereda-Ayo B, De-La-Torre U, González-Velasco JR. Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Appl Catal B Environ. 2017, 213, 198–210.
25. Wei Y, Ni L, Li M, Zhao J. Acid treated Sr-substituted LaCoO3 perovskite for toluene oxidation. Catal Commun. 2021, 155, 106314.
26. Wang S, Zhu J, Yang J, Li M, Zhu Y. Influence of LaCoO3 perovskite oxides prepared by different method on the catalytic combustion of ethyl acetate in the presence of NO. Appl Surf Sci. 2023, 623, 157045.
27. Ao R, Ma L, Guo Z, Liu H, Yang J, Yin X, et al. Effects of the preparation method on the simultaneous catalytic oxidation performances of LaCoO3 perovskites for NO and Hg0. Fuel. 2021, 305, 121617.
28. Li P, Chen X, Li Y, Schwank JW. Effect of preparation methods on the catalytic activity of La0.9Sr0.1CoO3 perovskite for CO and C3H6 oxidation. Catal Today. 2021;364:7–15.
29. Yan F, Li P, Zhang X. CO and C3H6 oxidation over La0.9Sr0.1CoO3 catalysts: Influence of preparation solvent. Korean J Chem Eng. 2021, 38(5), 945–951.
30. Zhao D, Song H, Liu J, Jiang Q, Li X, Xie W, et al. Advances in Designing Efficient La-Based Perovskites for the NOx Storage and Reduction Process. Catalysts. 2022, 431(6), 128528.
31. Saifei Wang, Yiyuan Zhang, Peiqi Chu, Jie Liu, Man Wang, Peng Zhang, et al. Different Active Sites of LaCoO3 and LaMnO3 for CH4 Oxidation by Regulation of Precursor’s Ion Concentration. Glob Environ Eng. 2020 Sep, 7(1 SE-Articles), 28–39.
32. Xie W, Xu G, Zhang Y, Yu Y, He H. Mesoporous LaCoO3 perovskite oxide with high catalytic performance for NOx storage and reduction. J Hazard Mater. 2022, 431, 128528.
33. Hu X-C, Wang W-W, Jin Z, Wang X, Si R, Jia C-J. Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia. J Energy Chem. 2019, 38, 41–9.
34. Wojcik A, Middleton H, Damopoulos I, Van herle J. Ammonia as a fuel in solid oxide fuel cells. J Power Sources. 2003, 118(1), 342–348.
35. Yang J, Molouk AFS, Okanishi T, Muroyama H, Matsui T, Eguchi K. Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3−δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells. ACS Appl Mater Interfaces. 2015 Apr, 7(13), 7406–7412.
36. Plekhanov МS, Kuzmin A V, Tropin ES, Korolev DA, Ananyev M V. New mixed ionic and electronic conductors based on LaScO3: Protonic ceramic fuel cells electrodes. J Power Sources. 2020, 449, 227476.
37. Wang B, Li T, Gong F, Othman MHD, Xiao R. Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell - a comprehensive review. Fuel Process Technol. 2022, 235, 107380.
38. Rahman MM, Abdalla AM, Omeiza LA, Raj V, Afroze S, Reza MS, et al. Numerical Modeling of Ammonia-Fueled Protonic-Ion Conducting Electrolyte-Supported Solid Oxide Fuel Cell (H-SOFC): A Brief Review. 2023, 11(9), 2728.
39. Mehdi AM, Hussain A, Khan MZ, Hanif MB, Song R-H, Kazmi WW, et al. Progress and prospects in direct ammonia solid oxide fuel cells. Russ Chem Rev. 2023, 92(11), RCR5098.
40. Quach T-Q, Sang Kim Y, Keun Lee D, Young Ahn K, Lee S, Bae Y. Thermal management of Ammonia-fed Solid oxide fuel cells using a novel alternate flow interconnector. Energy Convers Manag. 2023, 291, 117248.
41. Quach T-Q, Lee D, Giap V-T, Kim YS, Lee S, Ahn KY. Energetic and economic analysis of novel cascade systems for ammonia-fed solid oxide fuel cell. Int J Hydrogen Energy. 2024, 67, 1080–96.
42. Quach T-Q, Giap V-T, Keun Lee D, Pineda Israel T, Young Ahn K. High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation. Appl Energy. 2022, 324, 119718.
43. Kuzmin A V, Stroeva AY, Gorelov VP, Novikova YV, Lesnichyova AS, Farlenkov AS, et al. Synthesis and characterization of dense proton-conducting La1-xSrxScO3-α ceramics. Int J Hydrogen Energy. 2019, 44(2), 1130–1138.
44. Gwon O, Yoo S, Shin J, Kim G. Optimization of La1−xSrxCoO3−δ perovskite cathodes for intermediate temperature solid oxide fuel cells through the analysis of crystal structure and electrical properties. Int J Hydrogen Energy. 2014, 39(35), 20806–20811.
45. Stroeva AY, Ichetovkin ZN, Plekhanov MS, Borisov VA, Shlyapin DA, Snytnikov P V, et al. The Lanthanum-Scandate- and Lanthanum-Cobaltite-Based Composite Materials for Proton–Ceramic Electrochemical Devices. Russ J Electrochem. 2024, 60(1), 36–43.
46. Song Y, Li H, Xu M, Yang G, Wang W, Ran R, et al. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. Small. 2020 Jul, 16(28), 2001859.
47. Zhang Z-S, Fu X-P, Wang W-W, Jin Z, Song Q-S, Jia C-J. Promoted porous Co3O4-Al2O3 catalysts for ammonia decomposition. Sci China Chem. 2018, 61(11), 1389–1398.
48. Huang C, Li H, Yang J, Wang C, Hu F, Wang X, et al. Ce0.6Zr0.3Y0.1O2 solid solutions-supported NiCo bimetal nanocatalysts for NH3 decomposition. Appl Surf Sci. 2019, 478, 708–716.
49. Duan X, Ji J, Yan X, Qian G, Chen D, Zhou X. Understanding Co-Mo Catalyzed Ammonia Decomposition: Influence of Calcination Atmosphere and Identification of Active Phase. ChemCatChem. 2016 Mar, 8(5), 938–945.
50. Breucop JD. In Situ Raman Spectroscopy of Lanthanum- Strontium-Cobaltite Thin Films. By Department of Materials Science and Engineering at the Massachusetts Institute of Technology. 2012, 36 p.
51. Dragan M, Enache S, Varlam M, Petrov K. Perovskite-Type Lanthanum Cobaltite LaCoO3: Aspects of Processing Route toward Practical Applications. In: Yıldız Y, Manzak A, editors. Rijeka: IntechOpen; 2019, Ch. 6. p.
52. Wandekar R V, Wani BN, Bharadwaj SR. Crystal structure, electrical conductivity, thermal expansion and compatibility studies of Co-substituted lanthanum strontium manganite system. Solid State Sci. 2009, 11(1), 240–250.
53. Petrov AN, Kononchuk OF, Andreev A V, Cherepanov VA, Kofstad P. Crystal structure, electrical and magnetic properties of La1 − xSrxCoO3 − y. Solid State Ionics. 1995, 80(3), 189–199.
54. Li G, Yu X, Yin F, Lei Z, Zhang H, He X. Production of hydrogen by ammonia decomposition over supported Co3O4 catalysts. Catal Today. 2022, 402, 45–51.
55. Zhang W-W, Povoden-Karadeniz E, Shang Y, Hendriksen PV, Chen M. Phase equilibria and defect chemistry of the La-Sr-Co-O system. J Eur Ceram Soc. 2023, 43(10), 4419–4430.
Review
For citations:
Borisov V.A. La and Co-based materials for ammonia decomposition: activity, stability and structural changes. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4).
JATS XML
