Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The dependence of the critical energy density and hot-spot temperature on the radius of metal nanoparticles in PETN

https://doi.org/10.17586/2220-8054-2016-7-6-1017-1023

Abstract

The dependencies of critical energy density and corresponding hot-spot temperature were calculated in terms of thermal model of energetic materials laser initiation for 12 metal nanoparticles in pentaerythritol tetranitrate (PETN) at pulse duration 12 ns. We showed that the critical hot-spot temperature depends mostly on the nanoparticle’s radius while its dependence on the specific heat of the metal is much weaker. The equations for the critical parameters of initiation on radius and specific heat of the nanoparticles were derived. The results are essential for the explosive compounds for optical detonator cup optimization.

About the Authors

A. A. Zvekov
Federal Research Center of coal and coal chemistry SB RAS (Institute of Coal Chemistry and Material Science SB RAS)
Russian Federation

Kemerovo, 650000



A. P. Nikitin
Federal Research Center of coal and coal chemistry SB RAS (Institute of Coal Chemistry and Material Science SB RAS)
Russian Federation

Kemerovo, 650000



E. V. Galkina
Kemerovo state University
Russian Federation

Kemerovo, 650000



A. V. Kalenskii
Kemerovo state University
Russian Federation

Kemerovo, 650000



References

1. Chernai A.V., Sobolev V.V., Chernai V.A., Ilyushin M.A., Dlugashek A. Laser Ignition of Explosive Compositions Based on di-(3- hydrazino-4-amino-1,2,3-triazole)-Copper(II) Perchlorate. Combustion, Explosion and Shock Waves, 2003, 39(3), P. 335–339.

2. Aduev B.P., Nurmukhametov D.R., Furega R.I., Zvekov A.A., Kalenskii A.V. Explosive decomposition of PETN with nanoaluminum additives under the influence of pulsed laser radiation at different wavelengths. Russian Journal of Physical Chemistry B, 2013, 7(4), P. 453–456.

3. Kriger V.G., Kalenskii A.V., Zakharov Yu.A., Tsipilev V.P. Mehanizm tverdofaznoj cepnoj reakcii. Materialovedenie, 2006, 9, P. 14–21.

4. Kriger V.G., Kalenskii A.V., Zvekov A.A. Relaxation of electronically excited products of solid-state reactions in the crystal lattice. Russian Journal of Physical Chemistry B, 2012, 6(1), P. 15–18.

5. Aduev B.P., Belokurov G.M., Nurmukhametov D.R., Nelyubina N.V. Photosensitive material based on PETN mixtures with aluminum nanoparticles. Combustion, Explosion, and Shock Waves, 2012, 48(3), P. 361–366.

6. Greenfield M.T., McGrane S.D., Bolme C.A., Bjorgaard J.A., Nelson T.R., Tretiak S., Scharff R.J. Photoactive high explosives: linear and nonlinear photochemistry of petrin tetrazine chloride. Journal of Physical Chemistry A, 2015, 119(20), P. 4846–4855.

7. Evers J., Gospodinov I., Joas M., Klapotke T.M., Stierstorfer J. Cocrystallization of photosensitive energetic copper(II) perchlorate ¨ complexes with the nitrogen-rich ligand 1,2-di(1H-tetrazol-5-yl)ethane. Inorganic Chemistry, 2014, 53(21), P. 11749–11756.

8. Gerasimov S.I., Ilyushin M.A., Kuz’min V.A. A laser diode beam initiates a high-energy mercury perchlorate-polymer complex. Technical Physics Letters, 2015, 41(4), P. 338–340.

9. Kalenskii A.V., Zvekov A.A., Anan’eva M.V., Zykov I.Yu., Kriger V.G., Aduev B.P. Influence of laser wavelength on the critical energy density for initiation of energetic materials. Combustion, Explosion, and Shock Waves, 2014, 50(3), P. 333–338.

10. Aduev B.P., Nurmukhametov D.R., Furega R.I., Zvekov A.A. Controlling pentaerythrite tetranitrate sensitivity to the laser effect through the addition of nickel and aluminum nanoparticles. Russian Journal of Physical Chemistry B, 2014, 8(3), P. 352–355.

11. Zvekov A.A., Ananyeva M.V., Kalenskii A.V., Nikitin A.P. Regularities of light diffusion in the composite material pentaerythriol tetranitrate-nickel. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(1), P. 685–691.

12. Alexandrov E.I., Tsipilev V.P. Effect of the pulse length on the sensitivity of lead azide to laser radiation. Combustion, Explosion and Shock Waves, 1984, 20(6), P. 690–694.

13. Kalenskii A.V., Kriger V.G., Zvekov A.A., Grishaeva E.A., Zykov I.Yu, Nikitin A.P. The Microcenter Heat Explosion Model Modernization. Izvestija vysshih uchebnyh zavedenij. Fizika, 2012, 55(11-3), P. 62–65.

14. Kriger V.G., Kalenskii A.V., Zvekov A.A., Zykov I.Yu., Aduev B.P. Effect of laser radiation absorption efficiency on the heating temperature of inclusions in transparent media. Combustion, Explosion, and Shock Waves, 2012, 48(6), P. 705–708.

15. Aduev B.P., Anan’eva M.V., Zvekov A.A., Kalenskii A.V., Kriger V.G., Nikitin A.P. Miro-hotspot model for the laser initiation of explosive decomposition of energetic materials with melting taken into account. Combustion, Explosion and Shock Waves, 2014, 50(6), P. 704–710.

16. Galkina E.V., Radchenko K.A. The model of initiation of composites PENT – Tin by the pulse Nd: YAG laser. Nauka-Rastudent.ru, 2015. http://nauka-rastudent.ru/21/2917/.

17. Aleksandrov E.I., Tsipilev V.P. Characteristics of the optical regime in the volume of a semiinfinite layer of diffusely scattering medium under illumination by a directed beam with finite aperture. Russian Physics Journal, 1989, 31(10), P. 789–794.

18. Zvekov A.A., Kalenskii A.V., Aduev B.P., Ananyeva M.V. Calculation of the optical properties of pentaerythritol tetranitrate–cobalt nanoparticle composites. Journal of Applied Spectroscopy, 2015, 82(2), P. 213-220.

19. Aduev B.P., Nurmukhametov D.R., Belokurov G.M., Zvekov A.A., Kalenskii A.V., Nikitin A.P., Liskov I.Yu. Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite. Technical Physics, 2014, 59(9), P. 1387–1392.

20. Aduev B.P., Nurmukhametov D.R., Liskov I.Yu., Kalenskii A.V., Anan’eva M.V., Zvekov A.A. Characteristics of the initiation of the explosive decomposition of PETN by the second-harmonic pulsed radiation of a neodymium laser. Russian Journal of Physical Chemistry B, 2015, 9(6), P. 915–920.

21. Ananyeva M.V., Zvekov A.A., Zykov I.Yu., Kalenskii A.V., Nikitin A.P. Promising compounds for the cap of optical detonator. Perspektivnye materialy, 2014, 2, P. 5–12.

22. Lukatova S.G. Calculation of the PETN-gold composites’ absorptivity for the second harmonic of the Nd:YAG laser. Mezhdunarodnoe nauchnoe izdanie Sovremennye fundamental’nye i prikladnye issledovanija, 2014, 1(12), P. 95–98.

23. Ivashenko G.J. The regularities of light scattering from the Nd:YAG first harmonic of nickel nanoparticles in PETN. Actualscience, 2015, 1(3), P. 63–67.

24. Kriger V.G., Kalenskii A.V., Zykov I.Y., Nikitin A.P., Zvekov A.A. Heat-transfer processes upon laser heating of inert-matrix-hosted inclusions. Thermophysics and Aeromechanics, 2013, 20(3), P. 367–374.

25. Glushkov D.O., Kuznetsov G.V., Strizhak P.A. Ignition of a composite propellant by a hot particle under conditions of a nonideal thermal contact. Russian Journal of Physical Chemistry B, 2015, 9(4), P. 631–636.

26. Chumakov Yu.A., Knyazeva A.G. Initiation of reaction in the vicinity of a single particle heated by microwave radiation. Combustion, Explosion, and Shock Waves, 2012, 48(2), P. 144–150.

27. Odincova O.V., Ivashenko G.J. Temporal impulse shape of the first harmonic of the ND:YAG laser. Mezhdunarodnoe nauchnoe izdanie Sovremennye fundamental’nye i prikladnye issledovanija, 2015, 2(17), P. 43–48.

28. Zykov I.Yu., Kalenskii A.V. Application program package to simulate the kinetics of the explosive decomposition initiated by laser pulse in energetic material containing metal nanoparticles. Aspirant, 2015, 2, P. 73–77.

29. Kalenskii A.V., Zvekov A.A., Nikitin A.P., Anan’eva M.V., Aduev B.P. Specific features of plasmon resonance in nanoparticles of different metals. Optics and Spectroscopy, 2015, 118(6), P. 978–987.

30. Blaber M.G., Arnold M.D., Harris N., Ford M.J., Cortie M.B. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold. Physica B: Condensed Matter, 2007, 394(2), P. 184–187.

31. Radchenko K.A. The effect of the relative error on the accuracy of mathematical modeling. Nauka-rastudent.ru, 2015. http://naukarastudent.ru/24/3131/.


Review

For citations:


Zvekov A.A., Nikitin A.P., Galkina E.V., Kalenskii A.V. The dependence of the critical energy density and hot-spot temperature on the radius of metal nanoparticles in PETN. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(6):1017-1023. https://doi.org/10.17586/2220-8054-2016-7-6-1017-1023

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)