Topological damping of Aharonov-Bohm effect: quantum graphs and vertex conditions
https://doi.org/10.17586/2220-8054-2015-6-3-309-319
Аннотация
The magnetic Schr¨ odinger operator was studied on a figure 8-shaped graph. It is shown that for specially chosen vertex conditions, the spectrum of the magnetic operator is independent of the flux through one of the loops, provided the flux through the other loop is zero. Topological reasons for this effect are explained.
Об авторах
O. KurasovШвеция
A. Serio
Швеция
Рецензия
Для цитирования:
, . Наносистемы: физика, химия, математика. 2015;6(3):309–319. https://doi.org/10.17586/2220-8054-2015-6-3-309-319
For citation:
Kurasov O., Serio A. Topological damping of Aharonov-Bohm effect: quantum graphs and vertex conditions. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(3):309–319. https://doi.org/10.17586/2220-8054-2015-6-3-309-319