Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Fullerene films with suppressed polymerizing ability

Abstract

Illumination of fullerene with visible light in the presence of oxygen leads to a transition of oxygen from triplet (ground) to singlet (excited) state where singlet oxygen is a long-lived reactive oxygen species. The effectiveness of fullerene as a singlet oxygen generator drastically decreases when fullerenes are condensed into a bulk material, mainly due to the polymerization ability. The ability of fullerene films to polymerize was studied for the C60 fullerene films intercalated with tetraphenylporphyrine (TPP), CdS, CdTe, HNO3 as well as the hydrogen plasma treated films. Raman spectroscopy was used for monitoring the polymerization process. The ability to polymerize was found to be tightly connected to the formation of charge-transfer (Wannier-Mott) excitons which are revealed in the absorption spectra and measured with the help of spectroscopic ellipsometry.

About the Authors

M. Yesilbas
Umea University
Sweden

90187 Umea



T. L. Makarova
Umea University; Ioffe Physico-technical Institute
Sweden

90187 Umea; 194021 St. Petersburg



I. Zakharova
State Technical University
Russian Federation

195251 St. Petersburg



References

1. D. Guldi, M. Prato. Excited-state properties of C60 fullerene derivatives. Accounts of Chemical Research, 33, P. 695–703 (2000).

2. D. M. McCluskey, T. N. Smith, P. K. Madasu, C. E. Coumbe, M. A. Mackey, P. A. Fulmer, J. H. Wynne, S. Stevenson, J. P. Phillips. Evidence for Singlet Oxygen Generation and Biocidal Activity in Photoresponsive Metallic Nitride Fullerene-Polymer Adhesive Films. ACS Appl. Mater. & Interfaces, 1, P. 882–887 (2009).

3. C. S. Foote. Photophysical and photochemical properties of fullerenes. In: Electron Transfer I, ed.J. Mattay, Springer Berlin, Heidelberg, (1994) p. 1-17.

4. V. V. Zarubaev, I. M. Belousova, O. I. Kiselev, L. B. Piotrovsky, P. M. Anfimov, T. C. Krisko, T. D. Muraviova, V. V. Rylkov, A. M. Starodubzev, A. C. Sirotkin. Photodynamic inactivation of influenza virus with fullerene C60 suspension in allontoic fluid. Photodiagnosis and Photodynamic Therapy, 4, P. 31-35 (2007).

5. F. Kasermann, C. Kempf. Photodynamic inactivation of enveloped viruses by buckmisterfullerene. Antiviral Research, 34, P. 65–70 (1997).

6. Y. Kai, Y. Komazawa, A. Miyajima, N. Miyata, Y. Yamakoshi. [60] Fullerene as a Novel Photoinduced Antibiotic. In: Fullerenes, Nanotubes and Carbon Nanostructures, Taylor & Francis, New York (2003), pp. 79-87.

7. S. Wang, R. Gao, F. Zhou, M. Selke. Nanomaterials and singlet oxygen photosensitiziers: potential applications in photodynamic therapy. J. Mater. Chem., 14, P. 487–493 (2004).

8. P. Mroz, G. P. Tegos, H. Gali, T. Wharton, T. Sarna, M. R. Hamblin. Fullerenes as Photosensitiziers in Photodynamic Therapy. In: Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, ed. by F. Cataldo and T. D. Ros, Springer (2008), pp. 79-106.

9. T. Wagberg. Studies of polymeric and intercalated phases of C60, Umea University, Umea (2001).

10. T. Wagberg, P. Jacobsson, B. Sundqvist. Comparative Raman study of photopolymerized and pressurepolymerized C60 films. Phys. Rev. B, 60, P. 4535–4538 (1999).

11. A. N. Andriotis, M. Menon, R. M. Sheetz, E. Richter. McConnel Model for the Magnetism of C60-based Polymers. In: Carbon-Based Magnetism: An Overview of the Magnetism of Metal Free Carbon-Based Compounds and Materials, ed. by T. L. Makarova and F. Palacio. B. V. Elsevier, Amsterdam (2006), pp. 483–500.

12. A. V. Okotrub, V. V. Belavin, L. G. Bulusheva, V. A. Davydov, T. L. Makarova, D. Tomanek. Electronic structure and properties of rhombohedrally polymerized C60. J. Chem. Phys., 115, P. 5637–5641 (2001).

13. M. Yesilbas. Evaluation of fullerene-based films ability to suppress spontaneous polymerization, Umea University, Umea (2012).

14. D. Porezag, M. R. Pederson, T. Frauenheim, T. Khler. Structure, stability, and vibrational properties of polymerized C60. Phys. Rev. B, 52, P. 14963–14970 (1995).

15. T. Wagberg, P.-A. Persson, B. Sundqvist. Structural evolution of low-pressure polymerised C60 with polymerisation conditions. J. Phys. Chem. Solids, 60, P. 1989–1994 (1999).

16. P.C. Elkund. Phototransformation of fullerenes. Patent US5453413 (1993).

17. A. M. Rao, Zhou Ping, Wang Kai-An et. al. Photoinduced Polymerization of Solid C60 Films. Science, 259(5097), P. 955–957 (1993).

18. Z.-H. Dong, P. Zhou, J. M. Holden, P. C. Eklund, M. S. Dresselhaus, G. Dresselhaus. Observation of higher-order Raman modes in C60 films. Phys. Rev. B, 48, P. 2862–2865 (1993).


Review

For citations:


Yesilbas M., Makarova T.L., Zakharova I. Fullerene films with suppressed polymerizing ability. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(1):53-61.

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)