From \fat" graphs to metric graphs: the problem of boundary conditions
https://doi.org/10.17586/2220-8054-2015-6-6-751-756
Аннотация
We discuss how the vertex boundary conditions for the dynamics of a quantum particle on a metric graph emerge when the dynamics is regarded as a limit of the dynamics in a tubular region around the graph. We give evidence for the fact that the boundary conditions are determined by the possible presence of a zero-energy resonance. Therefore, the boundary conditions depend on the shape of the fat graph near the vertex. We also give evidence, by studying the case of the half-line, for the fact that on the contrary, in general, adding on a graph a shrinking support potentials at the vertex either does not alter the boundary condition or does not produce a self-adjoint dynamics. Convergence, throughout, is meant in the sense of strongly resolvent convergence.
Об авторах
G. F. Dell’AntonioИталия
A. Michelangeli
Германия
Список литературы
1. K. Kostrykin, S. Schrader. Kirchhoff’s rule for quantum wires. J. Phys. A: Math. Gen., 1999, 32, P. 595{630.
2. S. Albeverio, R. Høegh-Krohn. Perturbation of resonances in quantum mechanics. J. Math. Anal. Appl., 1984, 101(2), P. 491-513.
Рецензия
Для цитирования:
, . Наносистемы: физика, химия, математика. 2015;6(6):751-756. https://doi.org/10.17586/2220-8054-2015-6-6-751-756
For citation:
Dell’Antonio G., Michelangeli A. From \fat" graphs to metric graphs: the problem of boundary conditions. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6):751-756. https://doi.org/10.17586/2220-8054-2015-6-6-751-756