An introduction to the spectral asymptotics of a damped wave equation on metric graphs
https://doi.org/10.17586/2220-8054-2015-6-2-182-191
Abstract
This paper summarizes the main results of [1] for the spectral asymptotics of the damped wave equation. We define the notion of a high frequency abscissa, a sequence of eigenvalues with imaginary parts going to plus or minus infinity and real parts going to some real number. We give theorems on the number of such high frequency abscissas for particular conditions on the graph. We illustrate this behavior in two particular examples.
About the Author
J. Lipovsk´yCzech Republic
Department of Physics, Faculty of Science
Rokitansk´eho 62, 500 03 Hradec Kr´alov´e
References
1. Freitas P., Lipovsk´y J. Eigenvalue asymptotics for the damped wave equation on metric graphs (2013). arXiv : http://arxiv.org/abs/1307.6377.
2. Borisov D., Freitas P. Eigenvalue asymptotics, inverse problems and a trace formula for the linear damped wave equation. J. Diff. Eq., 247, P. 3028-3039 (2009).
3. Kuchment P. Quantum graphs: an introduction and a brief survey. Analysis on Graphs and Its Applications. Proc. Symp. Pure. Math. (Providence, RI: American Mathematical Society), P. 291-314 (2008).
4. Exner P., Lipovsk´y J. Resonances from perturbations of quantum graphs with rationally related edges. J. Phys. A.: Math. Theor., 43, P. 105301 (2010).
5. Kottos T., Smilansky U. Quantum chaos on graphs. Phys. Rev. Lett., 79, P. 4794-4797 (1997).
6. Akkermans E., Comtet A., Desbois J., Montambaux G., Texier C. Spectral determinant on quantum graphs. Annals of Physics, 284, P. 10-51 (2000).
7. Band R., Harrison J. M., Joyner C. H. Finite pseudo orbit expansion for spectral quantities of quantum graphs. J. Phys. A: Math. Theor., 45, P. 325204 (2012).
Review
For citations:
Lipovsk´y J. An introduction to the spectral asymptotics of a damped wave equation on metric graphs. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):182-191. https://doi.org/10.17586/2220-8054-2015-6-2-182-191