Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Quantum dynamics in a kicked square billiards

https://doi.org/10.17586/2220-8054-2015-6-2-216-223

Abstract

We study kicked particle dynamics in a rectangular quantum billiard. The kicking potential is chosen as localized at the center of the billiard. The exact solution for the time-dependent Schr¨odinger equation for a single kicking period is derived. Using this solution, the time-dependence of the average kinetic energy and probability density as a function of spatial coordinates are computed. Different regimes for trapping of the particle in kicking area are analyzed. It is found that depending of the values of kicking parameters, the average kinetic energy can be a periodic or a monotonically growing function of time or can be suppressed. Such behavior is explained in terms of particle trapping regimes. Wave packet dynamics are also studied.

About the Authors

S. Rakhmanov
National University of Uzbekistan
Uzbekistan

Faculty of Physics

Vuzgorodok, Tashkent 100174



D. Babajanov
Turin Polytechnic University in Tashkent
Uzbekistan

17 Niyazov Str., Tashkent 100095



O. Karpova
National University of Uzbekistan; Turin Polytechnic University in Tashkent
Uzbekistan

Faculty of Physics

Vuzgorodok, Tashkent 100174

17 Niyazov Str., Tashkent 100095



F. Khoshimova
Navoi State Mining Institute
Uzbekistan

27 Janubiy ko’chasi, Navoiy



References

1. G. Casati, B.V. Chirikov, J. Ford, F.M. Izrailev, in: G. Casati, J.Ford (Eds.), Lecture Notes in Physics, vol. 93, Springer-Verlag, Berlin, p. 334 (1979).

2. Lichtenberg A.J., Lieberman M.A. Regular and stochastic motion. N.Y.-Heidelberg-Berlin, Springer-Verlag, 499 pp. (1983).

3. R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, Nonlinear Physics: From Pendulum to Turbulence and Chaos. Academic Publisher, New York (1988).

4. M.C. Gutzwiller, Chaos in classical and quantum systems, New York, Springer Verlag (1990).

5. Bagrov V.G. and Gitman D.M. Exact Solutions of Relativistic Wave Equations, Dordrecht, Kluwer (1990).

6. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dy-namics. Springer-Verlag, New York (1992).

7. Thaller B. The Dirac Equation. Berlin, Springer (1992).

8. M.F. Shlesinger, G.M. Zaslavsky, U. Frish (Eds.), Lvy Flights and Related Topics in Physics. Springer-Verlag (1995).

9. G. Casati and B.V. Chirikov(eds.) Quantum chaos between order and disorder a selection of papers. Cambridge University Press, New York (1995).

10. Hans-J¨urgen St¨ockmann. Quantum Chaos: An Introduction. Cambridge University Press (1995).

11. De Vincenzo S. Thesis Magister scientiarum in science, physics mention. Universidad Central de Venezuela, Caracas (1996). (in Spanish)

12. K. Nakamura Quantum Versus Chaos. Questions Emerging from Mesoscopic Cosmos. Kluwer Academic Dordrecht (1997).

13. Yoseph Imry. Introduction to Mesoscopic Physics. Oxford University Press (1997).

14. H.-J. St¨ockmann, Quantum Chaos: An Introduction. Cambridge University Press, Cambridge, UK (1999).

15. K. Richter, Semiclassical Theory of Mesoscopic Quantum Systems. Springer, Berlin (2000).

16. K. Nakamura and T. Harayama. Quantum Chaos and Quantum Dots. Oxford University Press (2004).


Review

For citations:


Rakhmanov S., Babajanov D., Karpova O., Khoshimova F. Quantum dynamics in a kicked square billiards. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):216-223. https://doi.org/10.17586/2220-8054-2015-6-2-216-223

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)