Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On the possibility of using optical y-splitter in quantum random number generation systems based on fluctuations of vacuum

https://doi.org/10.17586/2220-8054-2015-6-1-95-99

Abstract

Quantum random number generation allows the obtaining of true random numbers that can be used for applications (e.g.,a cryptography) requiring a high degree of randomness. In this paper, we give a mathematical description of a quantum random number generation system using homodyne detection. As a result of the theoretical research, we obtained the description of the relationship between beam splitter input radiation and di erential current on detectors after beam splitting. We derived equations allowing one to estimate the scheme parameters imperfection impact on measurement results. We also obtained mathematical expres- sions, demonstrating the equivalence of quantum description of Y-splitter and beam splitter with two inputs, which allows the use Y-splitter for the implementation of quantum random number generation systems based on vacuum quantum 
uctuations.

About the Authors

A. E. Ivanova
ITMO University
Russian Federation

St. Petersburg,



S. A. Chivilikhin
ITMO University
Russian Federation

St. Petersburg



I. Yu. Popov
ITMO University
Russian Federation

St. Petersburg



A. V. Gleim
ITMO University
Russian Federation

St. Petersburg



References

1. Scarani V., Bechmann-Pasquinucci H., Cerf N. J. et al., The security of practical quantum key distri-bution. Rev. Mod. Phys., 81, P. 1301{1350 (2009).

2. Jennewein T., Achleitner U., Weihs G., Weinfurter H., A. Zeilinger A. A fast and compact quantum random number generator. Rev. Sci. Instrum., 71(4), P. 1675{1680 (2000).

3. Stefanov A., Gisin N., Guinnard O., Guinnard L. Zbinden H. Optical quantum random number gener-ator. J. Modern Optics, 47(4), P. 595{598 (2000).

4. Ivanova A.E., Egorov V.I., Chivilikhin S.A., Gleim A.V. Investigation of quantum random number generation based on space-time division of photons. Nanosystems: Physics, Chemistry, Mathematics, 4(4), P. 549{553 (2013).

5. Fiorentino M., Santori C., Spillane S. M., Beausoleil R. G., Munro W. J. Secure self-calibrating quantum random bit generator. Phys. Rev. A., 75, P. 032334 (2007).

6. Kwon O.,Cho Y.-W. , Kim Y.-H. Quantum random number generator using photon-number path en-tanglement. Appl. Opt., 48, P. 1774{1778 (2009).

7. Dynes J. F., Yuan Z. L, Sharpe A. W.,Shields A. J. A high speed, post-processing free, quantum random number generator. Appl. Phys. Lett., 93, P. 031109 (2008).

8. Furst M., Weier H.,Nauerth S., Marangon D. G.,Kurtsiefer C., Weinfurter H. High speed optical quan-tum random number generation. Optics Express, 18, P. 13029 (2010).

9. Qi B., Chi Y.-M.,Lo H.-K., Qian L. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35, P. 312{314 (2010).

10. Reidler I., Aviad Y.,Rosenbluh M., Kanter I. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett., 103, P. 024102 (2009).

11. Shen Y., Tian L.,Zou H. Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A., 81, P. 063814 (2010).

12. Braunstein S. L. Homodyne statistics. Phys. Rev. A., 42(1), P. 474{481 (1990).


Review

For citations:


Ivanova A.E., Chivilikhin S.A., Popov I.Yu., Gleim A.V. On the possibility of using optical y-splitter in quantum random number generation systems based on fluctuations of vacuum. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(1):95-99. https://doi.org/10.17586/2220-8054-2015-6-1-95-99

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)