On the possibility of using optical y-splitter in quantum random number generation systems based on fluctuations of vacuum
https://doi.org/10.17586/2220-8054-2015-6-1-95-99
Abstract
Quantum random number generation allows the obtaining of true random numbers that can be used for applications (e.g.,a cryptography) requiring a high degree of randomness. In this paper, we give a mathematical description of a quantum random number generation system using homodyne detection. As a result of the theoretical research, we obtained the description of the relationship between beam splitter input radiation and di erential current on detectors after beam splitting. We derived equations allowing one to estimate the scheme parameters imperfection impact on measurement results. We also obtained mathematical expres- sions, demonstrating the equivalence of quantum description of Y-splitter and beam splitter with two inputs, which allows the use Y-splitter for the implementation of quantum random number generation systems based on vacuum quantum
uctuations.
About the Authors
A. E. IvanovaRussian Federation
St. Petersburg,
S. A. Chivilikhin
Russian Federation
St. Petersburg
I. Yu. Popov
Russian Federation
St. Petersburg
A. V. Gleim
Russian Federation
St. Petersburg
References
1. Scarani V., Bechmann-Pasquinucci H., Cerf N. J. et al., The security of practical quantum key distri-bution. Rev. Mod. Phys., 81, P. 1301{1350 (2009).
2. Jennewein T., Achleitner U., Weihs G., Weinfurter H., A. Zeilinger A. A fast and compact quantum random number generator. Rev. Sci. Instrum., 71(4), P. 1675{1680 (2000).
3. Stefanov A., Gisin N., Guinnard O., Guinnard L. Zbinden H. Optical quantum random number gener-ator. J. Modern Optics, 47(4), P. 595{598 (2000).
4. Ivanova A.E., Egorov V.I., Chivilikhin S.A., Gleim A.V. Investigation of quantum random number generation based on space-time division of photons. Nanosystems: Physics, Chemistry, Mathematics, 4(4), P. 549{553 (2013).
5. Fiorentino M., Santori C., Spillane S. M., Beausoleil R. G., Munro W. J. Secure self-calibrating quantum random bit generator. Phys. Rev. A., 75, P. 032334 (2007).
6. Kwon O.,Cho Y.-W. , Kim Y.-H. Quantum random number generator using photon-number path en-tanglement. Appl. Opt., 48, P. 1774{1778 (2009).
7. Dynes J. F., Yuan Z. L, Sharpe A. W.,Shields A. J. A high speed, post-processing free, quantum random number generator. Appl. Phys. Lett., 93, P. 031109 (2008).
8. Furst M., Weier H.,Nauerth S., Marangon D. G.,Kurtsiefer C., Weinfurter H. High speed optical quan-tum random number generation. Optics Express, 18, P. 13029 (2010).
9. Qi B., Chi Y.-M.,Lo H.-K., Qian L. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35, P. 312{314 (2010).
10. Reidler I., Aviad Y.,Rosenbluh M., Kanter I. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett., 103, P. 024102 (2009).
11. Shen Y., Tian L.,Zou H. Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A., 81, P. 063814 (2010).
12. Braunstein S. L. Homodyne statistics. Phys. Rev. A., 42(1), P. 474{481 (1990).
Review
For citations:
Ivanova A.E., Chivilikhin S.A., Popov I.Yu., Gleim A.V. On the possibility of using optical y-splitter in quantum random number generation systems based on fluctuations of vacuum. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(1):95-99. https://doi.org/10.17586/2220-8054-2015-6-1-95-99