Universality of the discrete spectrum asymptotics of the three-particle Schrödinger operator on a lattice
https://doi.org/10.17586/2220-8054-2015-6-2-280-293
Abstract
In the present paper, we consider the Hamiltonian H(K), K ∈ T3 := (−π; π]3 of a system of three arbitrary quantum mechanical particles moving on the three-dimensional lattice and interacting via zero range potentials. We find a finite set Λ ⊂ T3 such that for all values of the total quasi-momentum K ∈ Λ the operator H(K) has infinitely many negative eigenvalues accumulating at zero. It is found that for every K ∈ Λ, the number N(K; z) of eigenvalues of H(K) lying on the left of z, z < 0, satisfies the asymptotic relation lim z→−0 N(K; z)| log |z||−1 = U0 with 0 < U0 < ∞, independently on the cardinality of Λ.
Keywords
About the Authors
M. I. MuminovMalaysia
Faculty of Scince
81310 Skudai, Johor Bahru
T. H. Rasulov
Uzbekistan
Faculty of Physics and Mathematics
M. Ikbol str. 11, 200100 Bukhara
References
1. V. Efimov. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B, 33 (8), P. 563–564 (1970).
2. S. Albeverio, R. H¨oegh-Krohn, T.T. Wu. A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior. Phys. Lett. A, 83 (3), P. 105–109 (1981).
3. R.D. Amado, J.V. Noble. On Efimov’s effect: a new pathology of three-particle systems. Phys. Lett. B, 35, P. 25–27 (1971); II. Phys. Lett. D, 5 (3), P. 1992–2002 (1972).
4. D.R. Yafaev. On the theory of the discrete spectrum of the three-particle Schr¨odinger operator. Math. USSR-Sb., 23, P. 535–559 (1974).
5. G.F. Dell’Antonio, R. Figari, A. Teta. Hamiltonians for systems of N particles interacting through point interactions. Ann. Inst. Henri Poincar´e, Phys. Theor., 60 (3), P. 253–290 (1994).
6. Yu.N. Ovchinnikov, I.M. Sigal. Number of bound states of three-body systems and Efimov’s effect. Ann. Phys., 123 (2), P. 274–295 (1979).
7. A.V. Sobolev. The Efimov effect. Discrete spectrum asymptotics. Commun. Math. Phys., 156 (1), P. 101–126 (1993).
8. H. Tamura. The Efimov effect of three-body Schr¨odinger operators. J. Func. Anal., 95 (2), P. 433–459 (1991).
9. H. Tamura. The Efimov effect of three-body Schr¨odinger operators: asymptotics for the number of negative eigenvalues. Nagoya Math. J., 130, P. 55–83 (1993).
10. D. Mattis. The few-body problem on a lattice. Rev. Modern Phys., 58 (2), P. 361–379 (1986).
11. A.I. Mogilner. Hamiltonians in solid state physics as multiparticle discrete Schr¨odinger operators: problems and results. Advances in Sov. Math., 5, P. 139–194 (1991).
12. M. Reed, B. Simon. Methods of Modern Mathematical Physics. III: Scattering theory. Academic Press, New York, 1979.
13. V.A. Malishev, R.A. Minlos. Linear infinite-particle operators. Translations of Mathematical Monographs. 143, AMS, Providence, RI, 1995.
14. L.D. Faddeev. Mathematical aspects of the three-body problem in quantum mechanics. Israel Program for Scientific Translations, Jerusalem, 1965.
15. L.D. Faddeev, S.P. Merkuriev. Quantum scattering theory for several particle systems. Kluwer Academic Publishers, 1993.
16. Zh.I. Abdullaev, S.N. Lakaev. Asymptotics of the discrete spectrum of the three-particle Schr¨odinger difference operator on a lattice. Theor. Math. Phys., 136 (2), P. 1096–1109 (2003).
17. S. Albeverio, S.N. Lakaev, Z.I. Muminov. Schr¨odinger operators on lattices. The Efimov effect and discrete spectrum asymptotics. Ann. Henri Poincar´e, 5, P. 743–772 (2004).
18. S.N. Lakaev, M.´E. Muminov. Essential and discrete spectra of the three-particle Schr¨odinger operator on a lattices. Theor. Math. Phys., 135 (3), P. 849–871 (2003).
19. Zh.I. Abdullaev. Finiteness of the discrete spectrum for non-trivial of the full quasi-momentum in the system of three bosons on a lattice. Russian Math. Surveys, 62 (1), P. 175–201 (2007).
20. P.R. Halmos. A Hilbert space problem book. Springer-Verlag New York Inc., second edition, 1982.
21. M.I. Muminov. Positivity of the two-particle Hamiltonian on a lattice. Theoret. Math. Phys., 153 (3), P. 1671–1676 (2007).
Review
For citations:
Muminov M.I., Rasulov T.H. Universality of the discrete spectrum asymptotics of the three-particle Schrödinger operator on a lattice. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):280-293. https://doi.org/10.17586/2220-8054-2015-6-2-280-293