Diagnostic methods for silica-reinforced carbon nanotube-based nanocomposites
https://doi.org/10.17586/2220-8054-2016-7-1-180-184
Abstract
This paper presents results of the experimental studies of the properties of silica-based nanocomposites with filler in the form of carbon nanotubes by dielectric relaxation and positron annihilation spectroscopy. Based on these results, techniques for diagnosis and control of the investigated materials were proposed.
About the Authors
M. K. EseevRussian Federation
Arkhangelsk
A. A. Goshev
Russian Federation
Arkhangelsk
P. Horodek
Russian Federation
Dubna, Moscow region; Krakow
S. N. Kapustin
Russian Federation
Arkhangelsk
A. G. Kobets
Russian Federation
Dubna, Moscow region; Kharkov
C. S. Osokin
Russian Federation
Arkhangelsk
References
1. Eletskii A.V. Carbon nanotubes. Physiks Uspekhi, 1997, 40(9), P. 899–924.
2. Eletskii A.V., Knizhnik A.A., Potapkin B.V., Kenny J.M. Electrical characteristics of carbon nanotube doped composites. Physiks Uspekhi, 2015, 58(3), P. 209–251.
3. Rakov E.G. Carbon nanotubes in new materials. Russian Chem. Rev., 2013, 82(1), P. 27–47.
4. Muradyan V.E., Sokolov E.A., Babenko S.D., Moravsky A.P. Microwave dielectric properties of composites modified by carbon nanostructures. Techn. Phys., 2010, 55(2), P. 242–246.
5. Usanov D.A., Skripal’ A.V., Romanov A.V. Complex permittivity of composites based on dielectric matrices with carbon nanotubes. Techn. Phys., 2011, 56(1), P. 102–106.
6. Usanov D.A., Skripal’ A.V., Romanov A.V. Effect of annealing on the microwave characteristics of carbon nanotubes and the nanocomposite materials based on them. Techn. Phys., 2014, 59(6), P. 873–878.
7. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects of using carbonaceous nanoparticles in binders for polymer composites. Nanotechnologies in Russia, 2013 8(3-4), P. 163–185.
8. Sidorin A.A., Meshkov I., Ahmanova E., Eseev M., Kobets A., Lokhmatov V., Pavlov V., Rudakov A., Yakovenko S. The LEPTA facility for fundamental studies of positronium physics and positron spectroscopy. Mater. Sci. Forum, 2013, 733, P. 291–296.
9. Puska M.J., Nieminen R.M. Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys., 1994, 66, P. 841–899.
10. Krause-Rehberg R., Leipner S.H. Positron annihilation in semiconductors. Springer, Berlin, 1998.
11. Chen H.M. Awad S., Jean Y.C., Yang J., James Lee L. Positron annihilation studies in polymer nanocomposites. Application of Accelerators in Research and Industry, 2011, 1336, P. 444–447.
Review
For citations:
Eseev M.K., Goshev A.A., Horodek P., Kapustin S.N., Kobets A.G., Osokin C.S. Diagnostic methods for silica-reinforced carbon nanotube-based nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):180-184. https://doi.org/10.17586/2220-8054-2016-7-1-180-184