Spectral properties of a two–particle hamiltonian on a d-dimensional lattice
https://doi.org/10.17586/2220-8054-2016-7-5-880-887
Abstract
A system of two arbitrary quantum particles moving on d-dimensional lattice interacting via some attractive potential is considered. The number of eigenvalues of the family h(k) is studied depending on the interaction energy of particles and the total quasi-momentum k ϵTd (Td - d-dimensional torus). Depending on the interaction energy, the conditions for h(0) that has simple or multifold virtual level at 0 are found.
About the Authors
M. I. MuminovMalaysia
81310 Skudai, Johor Bahru
A. M. Khurramov
Uzbekistan
References
1. Lakshtanov E.L., Minlos R.A. The Spectrum of Two-Particle Bound States for the Transfer Matrices of Gibbs Fields (an Isolated Bound State). Func. An. and Appl., 2004, 38 (3), P. 52–69.
2. Lakshtanov E.L., Minlos R.A. Two-Particle Bound State Spectrum of Transfer Matrices for Gibbs Fields (Fields on the Two-Dimensional Lattice. Adjacent Levels). Func. An. and Appl., 2005, 39 (1), P. 31–45.
3. Faria da Veiga P.A., Ioriatti L., O’Carroll M. Energy-momentum spectrum of some two-particle lattice Schr¨ odinger Hamiltonians. Phys. Rev. E, 2002, 66, P. 016130.
4. Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I. The threshold effects for the two-particle Hamiltonians. Comm. Math. Phys., 2006, 262, P. 91–115.
5. Muminov M.E. Positivity of the two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2007, 153 (3), P. 381–387.
6. Hiroshima F., Sakai I., Shirai T., Suzuki A. Note on the spectrum of discrete Schr¨ odinger operators. J. Math-for-Industry, 2012, 4, P. 105–108.
7. Higuchi Y., Matsumoto T., Ogurisu O. On the spectrum of a discrete Laplacian on Z with finitely supported potential. Lin. and Mult. Alg., 2011, 59 (8), P. 917–927.
8. Muminov M.E., Khurramov A.M. Spectral properties of a two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2013, 177 (3), P. 482–496.
9. Muminov M.E., Khurramov A.M. Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2014, 180 (3), P. 329–341.
10. Reed M., Simon B. Methods of modern Mathematical Physics. V. 4. Analysis of Operators. Academic Press, London, 1980.
11. Albeverio S., Gesztesy F., Krohn R.H., Holden H. Solvable Models in Quantum Mechanics. Springer-Verlag, New York. 1988
Review
For citations:
Muminov M.I., Khurramov A.M. Spectral properties of a two–particle hamiltonian on a d-dimensional lattice. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(5):880-887. https://doi.org/10.17586/2220-8054-2016-7-5-880-887