Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The influence of carbon (fullerite, graphite) on mechanical alloying of Cu-25 at % C composites

https://doi.org/10.17586/2220-8054-2016-7-1-190-197

Abstract

A comparative study of Cu-C60/70 and Cu-Cg composites obtained by mechanical alloying has been performed by means of scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. It has been demonstrated that high stress-related effects, which take place during the mechanochemical synthesis of Cu- C60/70 and Cu-Cg composites with a nanocrystalline structure, result in the formation of an oversaturated solid solution of carbon in copper, Cu(C). The morphology and the parameters of the crystal lattice aCu(tMA) and the sizes of the crystallites L(tMA) of the powders obtained depend on the deformational stability of fullerite and graphite and also on their reactivity to adsorbed oxygen.

About the Authors

R. M. Nikonova
Physicotechnical Institute, Ural Branch of Russian Academy of Sciences
Russian Federation

Izhevsk



V. I. Ladyanov
Physicotechnical Institute, Ural Branch of Russian Academy of Sciences
Russian Federation

Izhevsk



N. S. Larionova
Physicotechnical Institute, Ural Branch of Russian Academy of Sciences
Russian Federation

Izhevsk



References

1. Barner A., Mundim K.C., Ellis D.E., Dorfman S., Fuks D., Evenhaim R. Microstructure of Cu-C interface in Cu-based metal matrix composite. Sensors and Actuators A, 1999, 74, P. 86–90.

2. Sheibani S., Ataie A., Heshmati-Manesh S., Khayati G.R. Role of process control agent on synthesis and consolidation behavior of nano-crystalline copper produced by mechano-chemical route. Mater. Lett., 2007, 61, P. 3204–3207.

3. Guillet A., Yama Nzoma E., Pareige P. A new processing technique for copper-graphite multilamentary nanocomposite wire: Microstructures and electrical properties. J. Mater. Process. Technol., 2007, 182, P. 50– 57.

4. Nunes D., Livramento V., Mateus R., Correia J.B., L.C.Alves, Vilarigues M., Carvalho P.A. Mechanical synthesis of copper-carbon nanocomposites: structural changes, strengthening and thermal stabilization. Mater. Sci. Engin. A, 2011, 528, P. 8610–8620.

5. Chu K., Gua H., Jia C., Yin F., Zhang Z., Liang X., Chen H. Thermal properties of Carbon Nanotube-Copper Composites for Tremal Management Applications. Nanoscale Res. Lett., 2010, 5, P. 969–874.

6. Shukla A.K., Nayan N., Murty S.V.S.N., Sharma S.C., Chandran P. Processing of copper-carbon nanotube composites by vacuum hot pressing technique. Mater. Sci. Engin. A, 2013, 560, P. 365–371.

7. Yamamoto K., Taguchi T., Hanada K., Osawa E., Inakuma M., Livramento V., Correia J.B., Shohhji N. TEM studies of nanocarbons and nanodiamonds (ND): mechanical milling of ND and Cu. Diamond Related Mater., 2007, 16, P. 2058–2063.

8. Medvedev V.V., Popov M.Y, Mavrin B.N., Denisov V.N., Kirichenko A., Tat’yanin E.V., Ivanov L.A., Akssenenkov V.V., Perfilov S.A., Lomakin R., Blank V.D. Cu-C60 nanocomposite with suppressed recrystallization. Appl.Phys.A, 2011, 105, P. 45–48.

9. Bezruchko G.S., Razorenov S.V., Popov M.Y. The influence of the admixture of the fullerene C60 on the strength properties of aluminum and copper under shock-wave loading. J. Phys.: Conf. Ser. 2014, 500, P. 112008(1-6).

10. Kovtun V.A. Investigation of structure and properties of composite materials based on copper-carbon nanoparticles powder systems formed by electrocontact sintering. Machines, Technologies, Materials, 2012, 3, P. 34– 38.

11. Shpilevsky E.M., Baran L.V., Okatova G.P. Structurally-phase composition of the films Cu-C60, obtained by condensation in a vacuum of a joint atomic-molecular flow. Adv. Mater., 2003, 3, P. 56–59.

12. Larionova T.V., Markina N.V., Petrov N.V., Shapovalov O.S., Afanasev A.A., Koltsova T.S. The structure and hardness of the copper composite materials of carbon. Vestnik Novgorod State University, 2012, 68, P. 15–19.

13. Guillet A., Nzoma E.Yama, Pareige P. A new processing technique for copper-graphite multifilamentary nanocomposite wire: Microstructures and electrical properties. J. Mater. Process. Technol., 2007, 182, P. 50– 57.

14. Robles Hernandez F.C. Production and characterization of Fe-Cgraphite and Fe-Cfullerene composites produced by different mechanical alloying techniques. J. Metallurgy, 2004, 10(2), P. 107–118.

15. Robles Hernandez F.C., Calderon H.A. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering. Mater. Chem. Phys., 2012, 132, P. 815–822.

16. Nikonova R.M., Dorofeyev G.A., Ladyanov V.I., Pushkaryov B.Ye. Mechanical alloying of Mg nanocomposites with different forms of carbon. Chem. Phys. Mezoscopy, 2010, 12(3), P. 382–389.

17. Pratapa S., O’Connor B. Development of MgO ceramic standards for X-ray and neutron line broadening assessments. Advances in X-ray Analysis, 2002, 45, P. 41–47.

18. Bukallov S.S., Mikhalitzin L.A., Zubavichus Ya.V., Leites L.A., Novikov Y.N. Investigation of the structure of graphite and some other sp2 carbon materials by means of micro-Raman spectroscopy and X-ray diffraction. Russian Chem. J., 2006, L(1), P. 83–91.

19. Shpilevskiy M.E., Stelmakh V.F. Fullerenes and fullerene-like structures as a basis for advanced materials. J. Engin. Phys., 2001, 74(6), P. 106–112.

20. Lad’yanov V.I., Nikonova R.M., Larionova N.S., Aksenova V.V., Mukhalin V.V., Rud A.D. Deformation Induced Changes in the Structure of Fullerites C60/70 during Their Mechanical Activation. Phys. Solid State, 2013, 55(6), P. 1319–1324.

21. Berner A., Fuks D., Ellis D.E., Mundim K., Dorfman S. Formation of nano-crystalline structure at the interface in Cu-C composite. Appl. Surf. Sci., 1999, 144-145, P. 677–681.

22. Sidorov L.N., Yurovskaya M.A., et al. Fullerenes. Moscow: Publishing House “Exam”, 2005, 688 p.

23. Azarenkov N.A., Litovchenko S.V., Nekludov I.M., Stoyev P.I. Corrosion and protection of metals. Part 1. Chemical corrosion of metals. Textbook. Kh. NU, Kharkov, 2007, 187 pp.


Review

For citations:


Nikonova R.M., Ladyanov V.I., Larionova N.S. The influence of carbon (fullerite, graphite) on mechanical alloying of Cu-25 at % C composites. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):190-197. https://doi.org/10.17586/2220-8054-2016-7-1-190-197

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)