Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Waveguide bands for a system of macromolecules

https://doi.org/10.17586/2220-8054-2015-6-5-611-617

Abstract

A system of parallel chain-type macromolecules (linear polymers) is considered. The spectrum of an electron in such a system is described. Waveguide bands are shown to be present, ensuring conductivity. Consideration is undertaken within the framework of a zero-range potentials model based on the theory of self-adjoint extensions of symmetric operators. Possible applications also discussed. 

About the Authors

V. M. Adamyan
Odessa I. I. Mechnikov National University
Ukraine

Dvoryanskaya str., 2, Odessa, 65082



I. V. Blinova
ITMO University
Russian Federation

Kronverkskiy, 49, Saint Petersburg, 197101



A. I. Popov
ITMO University
Russian Federation

Kronverkskiy, 49, Saint Petersburg, 197101



I. Yu. Popov
ITMO University
Russian Federation

Kronverkskiy, 49, Saint Petersburg, 197101



References

1. I.Yu. Popov. On the possibility of magnetoresistance governed by light. Nanosystems: Phys. Chem. Math., 2013, 4(6), P. 795–799.

2. U. Wulf, M. Krahlisch, J. Kucera, H. Richter, J. Hontschel. A quantitative model for quantum transport in nano-transistors. Nanosystems: Phys. Chem. Math., 2013, 4(6), P. 800–809.

3. I. S. Lobanov, A. I. Trifanov, E. S. Trifanova. Genetic algorithm for constructing graphene nanoribbon with given electronic transport properties. Nanosystems: Phys. Chem. Math., 2013, 4(4), P. 512–523.

4. I.Yu.Popov, A.N.Skorynina, I.V.Blinova. On the existence of point spectrum for branching strips quantum graph. J. Math. Phys., 2014, 55, 033504/1-20.

5. A.A.Boitsev, I.Yu.Popov, O.V.Sokolov. Hamiltonian with zero-range potentials having infinite number of eigenvalues. Nanosystems: Phys. Chem. Math., 2012, 3(4), P. 9–19.

6. S.Albeverio, F.Gesztesy, R.Hoegh-Krohn, H.Holden with an appendix by P.Exner 2005 Solvable Models in Quantum Mechanics: Second Edition. (Providence, R.I.: AMS Chelsea Publishing)

7. B.S.Pavlov, Extensions theory and explicitly solvable models. Uspekhi. Mat. Nauk., 1987, 42(6), P. 99– 131.

8. J.Berndt , M. M. Malamud, H. Neidhardt. Scattering matrices and Weyl functions. Proc. London Math. Soc., 2008, 97(3), P. 568–598.

9. A.A. Boitsev, H. Neidhardt, I.Yu. Popov. Weyl function for sum of operators tensor products. Nanosystems: Phys. Chem. Math., 2013, 4(6), P. 747–759.

10. M. S. Birman, M. Z. Solomyak. Spectral Theory of Self-Adjoint Operators in Hilbert Space (D. Reidel Publishing Company, Dordrecht-Boston-Lancaster, 1987).

11. A. Alonso, B. Simon. The Birman-Krein-Vishik theory of selfadjoint extensions of semi-bounded operators. J. Oper. Theory, 1980, 4, P. 251–270.

12. V.M. Adamyan, B.S. Pavlov. Null-range potentials and M.G. Krein’s formula for generalized resolvents. Journal of Soviet Mathematics, 1988, 42(2), P. 1537–1550.


Review

For citations:


Adamyan V.M., Blinova I.V., Popov A.I., Popov I.Yu. Waveguide bands for a system of macromolecules. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(5):611-617. https://doi.org/10.17586/2220-8054-2015-6-5-611-617

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)