Preview

Наносистемы: физика, химия, математика

Расширенный поиск

On the spillover effect of the solid H2 intercalation into GNF’s

https://doi.org/10.17586/2220-8054-2016-7-1-204-209

Об авторах

Yu. S. Nechaev
Kurdjumov Institute of Metals Science and Physics, Bardin Institute for Ferrous Metallurgy
Россия

Moscow



V. P. Filippova
Kurdjumov Institute of Metals Science and Physics, Bardin Institute for Ferrous Metallurgy
Россия

Moscow



A. A. Tomchuk
Kurdjumov Institute of Metals Science and Physics, Bardin Institute for Ferrous Metallurgy
Россия

Moscow



A. Yurum
Nanoechnology Research and Application Centre, Sabanci University
Турция

Istanbul



Yu. Yurum
Falulty of Engineering and Natural Sciences, Sabanci University
Турция

Istanbul



T. N. Veziroglu
International Association for Hydrogen Energy
Соединённые Штаты Америки

Miami, FL 33155



Список литературы

1. Juarez-Mosqueda R., Mavrandonakis A., Kuc, A.B., Pettersson L.G. M., Heine T. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. Front Chem., 2015, 3(2).

2. Han S.S., Jung H., Jung D. H., Choi S.-H., Park N. Stability of hydrogenation states of graphene and conditions for hydrogen spillover. Phys. Rev. B, 2012, 85, P. 155408.

3. Bhowmick R., Rajasekaran S., Friebel D., Beasley C., Jiao L., Ogasawara H., Dai H., et al. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds. J. Am. Chem. Soc., 2011, 133, P. 5580–5586.

4. Chen L., Cooper A. C., Pez G. P., Cheng H. Mechanistic study on hydrogen spillover onto graphitic carbon materials. J. Phys. Chem. C, 2007, 111, P. 18995–19000.

5. Lachawiec A.J., Qi G., Yang R.T. Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir, 2005, 21, P. 11418–11424.

6. Psofogiannakis G.M., Froudakis G.E. DFT study of the hydrogen spillover mechanism on Pt-Doped graphite. J. Phys. Chem. C, 2009, 113, P. 14908–14915.

7. Yang F.H., Lachawiec A.J., Yang R.T. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. J. Phys. Chem. B, 2006, 110, P. 6236–6244.

8. Yang R.T., Wang Y. Catalyzed hydrogen spillover for hydrogen storage. J. Am. Chem. Soc., 2009, 131, P. 4224–4226.

9. Li Y., Yang R.T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc., 2006, 128, P. 726–727.

10. Zacharia R., Rather S., Hwang S.W., Nahm K.S. Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes. Chem. Phys. Lett., 2007, 434, P. 286–291.

11. Nechaev Yu.S., Veziroglu T.N. On the hydrogenation-dehydrogenation of graphene-layer-nanostructures: Relevance to the hydrogen on-board storage problem. International J. Phys. Sci., 2015, 10(2), P. 54–89.

12. Nechaev Yu.S., Veziroglu T.N. Thermodynamic aspects of the stability of the graphene/graphane/hydrogen systems, relevance to the hydrogen on-board storage problem. Adv. Mater. Phys. Chem., 2013, 3, P. 255–280.

13. Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), P. 385–388.

14. Pinto H.P., Leszczynski J. Fundamental properties of graphene. In: Handbook of Carbon Nano Materials. Vol. 5 (Graphene – Fundamental Properties), Eds. F. D’Souza, K.M. Kadish, World Scientific, New Jersey, 2014, P. 1–38.

15. Waqar Z. Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption. J. Mater. Sci., 2007, 42(4), P. 1169–1176.

16. Balog R., Jørgensen B., Wells J., Lægsgaard E., Hofmann P., Besenbacher F., Hornekær L. Atomic hydrogen adsorbate structures on graphene. J. Am. Chem. Soc., 2009, 131(25), P. 8744–8745.

17. Hu S., Lozada-Hidalgo M., Wang F.C., Mishchenko A., Schedin F., Nair R.R., Geim A.K. Proton transport through one atom thick crystals. Nature, 2014, 516, P. 227-230.

18. Trunin R.F., Urlin V.D., Medvedev A.B. Dynamic compression of hydrogen isotopes at megabar pressures. Phys. Usp., 2010, 53, P. 605–622.

19. Gupta B.K., Tiwari R.S., Srivastava O.N. Studies on synthesis and hydrogenation behavior of graphitic nanofibers prepared through palladium catalyst assisted thermal cracking of acetylene. J. Alloys Compd., 2004, 381, P. 301–308.

20. Nechaev Yu.S., Yurum A., Tekin A., Yavuz N.K., Yuda Yurum, Veziroglu T.N. Fundamental open questions on engineering of super hydrogen sorption in graphite nanofibers: Relevance for clean energy applications. Am. J. Anal. Chem., 2014, 5(16), P. 1151–1165.


Рецензия

Для цитирования:


Nechaev Yu.S., Filippova V.P., Tomchuk A.A., Yurum A., Yurum Yu., Veziroglu T.N. On the spillover effect of the solid H2 intercalation into GNF’s. Наносистемы: физика, химия, математика. 2016;7(1):204-209. https://doi.org/10.17586/2220-8054-2016-7-1-204-209

For citation:


Nechaev Yu.S., Filippova V.P., Tomchuk A.A., Yurum A., Yurum Yu., Veziroglu T.N. On the spillover effect of the solid H2 intercalation into GNF’s. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):204-209. https://doi.org/10.17586/2220-8054-2016-7-1-204-209

Просмотров: 24


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)