Quantum-chemical study of carbon nanotubes interaction with contaminants of petroleum, oil and lubricants
https://doi.org/10.17586/2220-8054-2016-7-1-253-259
Abstract
The article presents the results from the study of carbon nanotube (CNT) interaction with the main products generated in the process of oil “aging”, in particular with a molecule of sulfurous acid, hydroxyl group, ferrous and aluminium oxides. The purpose of the paper is to prove the possibility of oxygen atom adsorption on the outside face of CNT.
About the Authors
I. ArkharovaRussian Federation
Volgograd
I. Zaporotskova
Russian Federation
Volgograd
References
1. Bujanovskij I.A., Fuks I.G., Shabalina T.N. Boundary lubrication: stages of tribology development. Nefti gas, Moscow, 2002.
2. Badisova K.M., Berstad J.A., Bogdanov S.K., Shkolnikov V.M., Anisimov I.G., Batov S.A. Fuels, lubricating materials, technical liquids. Variety and application: manual. Publishing center “Tekhinform”, Moscow, 1999.
3. Ventsel E.S., Zhalkin S.G., Danko N.I. Improvement of quality and increase of service life of petroleum oils. Ukrainian State University of Railway Transport, Kharkov, 2003, 168 pp.
4. Grigoriev M.A. Quality of engine oil and reliability of engines. Publishing house of standards, Moscow, 1981, 232 pp.
5. Ljuty M., Kostyukovich G., Kravchenko V., Struk V., Ovchinnikov E. Tribo-technical characteristics of lu- bricating materials modified with nanodesperse fillers. Nanostructural materials. Abstr. 2-nd scitech. seminar 24–25 October 2002, IMET RAN, Belorussia - Russia, 2002.
6. Lubricating oil composition for friction reduction that includes nanoporous particles: pat. Russian Federation: B82B C10M C10N / Lee Hyeung Jin; Cho Yong Rae; patent applicant and holder SK LubricantsCo., Ltd. - 2012145479/04; applic. 16.03.11; publ. 10.04.14, Journal. 10.
7. Eleckij A.V. Sorption properties of carbon nanostructures. Physics Uspekhi, 2004, 47(11), P. 1119–1154.
8. Harris P. Carbon Nanotubes and Related Structures. New Materials for the Twenty-first Century. Tekhnosfera, Moscow, 2003, 336 p.
9. Djachkov P.N. Carbon nanotubes: morphology, properties, applications. Binom, Moscow, 2010.
10. Zaporotskova I.V. Carbon and non-carbon nanomaterials and composite structures on its base: morphology and electron properties. Volgograd State University Press, Volgograd, 2009, 490 p.
11. Kotliar G., Savrasov S.Y., Haule K., Oudovenko V.S., Parcollet O., Marianetti C.A. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys., 2006, 78(3), P. 865–951.
12. Wang Z., Gao F., Li N., Qu N., Gou H., Hao X. Density functional theory study of hexagonal carbon phases. J. Phys.: Condens. Matter, 2009, 21, P. 235401–235406.
13. Bajsupova E., Aminova R.M. Modelling of molecular nanosize clusters with quantum chemistry methods. Butlerov’s messages, 2009, P. 10–22.
14. Ignatov S.K. Quantum-chemical modelling of molecular structure, physico-chemical properties and reactive capacity. Novgorod State University Press, Nizhni Novgorod, 2006, 82 p.
15. Reich S., Thomsen C., Maultzsch J. Carbon nanotubes. Basic concepts and physical properties. Wiley, VCH Verlag, Berlin, 2003.
16. Rangel Cortes E., Magaña Soí L.F., Arellano J.S. Interaction of a water molecule with a graphene layer. Revista Mexicana de Física, 2013, 59(1), P. 118–125.
Review
For citations:
Arkharova I., Zaporotskova I. Quantum-chemical study of carbon nanotubes interaction with contaminants of petroleum, oil and lubricants. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):253-259. https://doi.org/10.17586/2220-8054-2016-7-1-253-259