Analytical benchmark solutions for nanotube flows with variable viscosity
https://doi.org/10.17586/2220-8054-2015-6-5-672-679
Abstract
Three-dimensional Stokes equations with variable viscosity in cylindrical coordinates are considered. This case is natural for flow through a nanotube in biological applications. We obtain exact particular solutions – a benchmark for numerical approache.
About the Authors
I. V. MakeevRussian Federation
49, Kronverkskiy, St. Petersburg, 197101
I. V. Blinova
Russian Federation
49, Kronverkskiy, St. Petersburg, 197101
I. Yu. Popov
Russian Federation
49, Kronverkskiy, St. Petersburg, 197101
References
1. Zhang H., Xu Sh., Jeffries G.D.M., Orwar O., Jesorka A. Artificial nanotube connections and transport of molecular cargo between mammalian cells. Nano Comm. Net., 2013, 4(4), P. 197–204.
2. Li T.-D., Gao J., Szoszkeiwicz R., Landman U., Riedo E. Structured and viscous water in subnanometr gaps. Phys. Rev. B, 2007, 75, P. 115415.
3. Popov I.Yu., Chivilikhin S.A., Rodygina O.A., Gusarov V.V. Crystallite model for flow in nanotube caused by wall soliton. Nanosystems: Phys. Chem. Math., 2014, 5(3), P. 400–404.
4. Popov I. Statistical derivation of modified hydrodynamic equations for nanotube flows. Phys. Scripta, 2011, 83, P. 045601/1-5.
5. Mashl R.J., Joseph S., Aluru N.R., Jacobsson E. Anomalously immobilized water: A new water phase induced by confinement in nanotubes. Nano Letters, 2003, 3(5), P. 589–592.
6. Kolesnikova S.A., Loonga C.K., de Souzaa N.R., Burnhamb C.J., Moravskyc A.P. Anomalously soft dynamics of water in carbon nanotubes, Physica B, 2006, 385-386, P. 272–274.
7. Popov I., Makeev I. A benchmark solution for 2-D Stokes flow over cavity, Z. Angew. Math.Phys., 2014, 65, P. 339–348.
8. Popov A.I., Gerya T., Lobanov I.S., Popov I.Yu. Benchmark solutions for nanoflows. Nanosystems: Phys. Chem. Math., 2014, 5(2), P. 391–399.
9. Popov A.I., Gerya T., Lobanov I.S., Popov I.Yu. On the Stokes flow computation algorithm based on Woodbury formula. Nanosystems: Phys. Chem. Math. 2015, 6(1), P. 140–145.
10. Gerya T. Introduction to Numerical Geodynamic Modelling. Cambridge: Cambridge University Press, 2010.
Review
For citations:
Makeev I.V., Blinova I.V., Popov I.Yu. Analytical benchmark solutions for nanotube flows with variable viscosity. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(5):672-679. https://doi.org/10.17586/2220-8054-2015-6-5-672-679