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In this presentation, we wish to provide an overview of the spectral features for the self-adjoint Hamiltonian of the

three-dimensional isotropic harmonic oscillator perturbed by either a single attractive δ-interaction centered at the

origin or by a pair of identical attractive δ-interactions symmetrically situated with respect to the origin. Given that

such Hamiltonians represent the mathematical model for quantum dots with sharply localized impurities, we cannot

help having the renowned article by Brüning, Geyler and Lobanov [1] as our key reference. We shall also compare

the spectral features of the aforementioned three-dimensional models with those of the self-adjoint Hamiltonian

of the harmonic oscillator perturbed by an attractive δ′-interaction in one dimension, fully investigated in [2, 3],

given the existence in both models of the remarkable spectral phenomenon called ”level crossing”. The rigorous

definition of the self-adjoint Hamiltonian for the singular double well model will be provided through the explicit

formula for its resolvent (Green’s function). Furthermore, by studying in detail the equation determining the ground

state energy for the double well model, it will be shown that the concept of “positional disorder”, introduced in [1]

in the case of a quantum dot with a single δ-impurity, can also be extended to the model with the twin impurities

in the sense that the greater the distance between the two impurities is, the less localized the ground state will be.

Another noteworthy spectral phenomenon will also be determined; for each value of the distance between the two

centers below a certain threshold value, there exists a range of values of the strength of the twin point interactions

for which the first excited symmetric bound state is more tightly bound than the lowest antisymmetric bound state.

Furthermore, it will be shown that, as the distance between the two impurities shrinks to zero, the 3D-Hamiltonian

with the singular double well (requiring renormalization to be defined) does not converge to the one with a single

δ-interaction centered at the origin having twice the strength, in contrast to its one-dimensional analog for which

no renormalization is required. It is worth stressing that this phenomenon has also been recently observed in the

case of another model requiring the renormalization of the coupling constant, namely the one-dimensional Salpeter

Hamiltonian perturbed by two twin attractive δ-interactions symmetrically situated at the same distance from the

origin.



Spectral properties of a symmetric three-dimensional quantum dot . . . 269

Keywords: level crossing, degeneracy, point interactions, renormalisation, Schrödinger operators, quantum dots,

perturbed quantum oscillators.

Received: 7 November 2015

1. Introduction

In this work, we wish to further extend our previous research on various types of
point perturbations of Schrödinger Hamiltonians with or without harmonic confinement (see,
e.g., [2–11]) to the physical models utilized to describe three-dimensional quantum dots.

This presentation will try to be an expansion of the detailed spectral analysis carried out
in [1], in the sense that, after briefly reviewing in Section 2 the findings of [1,9] for the case of a
three-dimensional quantum dot with a single impurity consisting of a point interaction centered
at the origin, we are going to investigate in Section 3 the model with two twin attractive point
impurities symmetrically situated with respect to the bottom of the harmonic confining potential.
In Section 2, by analyzing the behavior of the new energy levels created by a point perturbation
as functions of the parameter labeling the self-adjoint extensions, physically characterized by
being proportional to the inverse scattering length (see [1,4]), we are going to stress the analogy
of the presence of the so-called “level crossings” between the newly created eigenenergies of
bound states with a given symmetry and those of the unperturbed harmonic oscillator unaffected
by the singular perturbation pertaining to bound states having the opposite symmetry. We will
also underline the difference between this three-dimensional model and the one-dimensional
one, studied in [2,3], in which the harmonic oscillator is perturbed by a so-called δ′-interaction,
whose quadratic form is given by the expression |δ′〉 〈δ′|.

The first step in the investigation outlined in Section 3 will necessarily be the rigorous
definition of the self-adjoint Hamiltonian representing the energy operator for our model. This
will be achieved by first introducing the usual ultraviolet energy cut-off and then making the
coupling constant dependent on the cut-off itself in such a way that the typical cancellation of
divergences will take place in the norm-resolvent limit once the cut-off is removed.

Once the explicit expression of the resolvent (Green’s function) is obtained, its poles
will provide us with the eigenvalues (energy levels) for the three-dimensional harmonic oscil-
lator perturbed by singular interactions (3D quantum dot with point impurities). The noticeable
difference between the bound state equation pertaining to the model with a single impurity
centered at the origin (described in Section 2) and the one for the singular double well is the
inevitable absence of the simple expression containing the ratio of Gamma functions enabling
us to study all the eigenvalues on an equal footing. Although it is still possible, at least con-
ceptually, to carry out the analysis of the entire discrete spectrum, the operational task is made
quite challenging by the fact that the equation for an eigenvalue pertaining to a bound state with
a given symmetry may not be used for the eigenvalue pertaining to the next upper bound state
with the same symmetry without the modifications needed to cancel the inevitable appearance
of divergences, a procedure outlined in [2,8–11] in the case of the other aforementioned models.

As a consequence, we have necessarily restricted our task to a rather detailed description
of the behavior of the lowest lying eigenvalues (energy levels) of the spectrum with respect to
the variations of the two key parameters of the model, one labelling the self-adjoint extensions
of the operator (or its reciprocal) and the other one given by the distance between either impurity
and the origin.

Given that the findings of our analysis in Section 3 are unavoidably linked to some
possible avenues of future research, we refrain from anticipating them in an abbreviated fashion
at this stage, as they will be summarized in detail in Section 4, the final section in which
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the most important conclusions will be drawn and some perspectives for future work will be
sketched.

2. The three-dimensional isotropic harmonic oscillator perturbed by a single attractive
point perturbation centered at the origin

We wish to start our analysis by revisiting the model used in [1] to describe a 3D-
quantum dot, namely the three-dimensional isotropic harmonic oscillator perturbed by an at-
tractive point perturbation. The spectroscopy of such a Schrödinger Hamiltonian was also fully
investigated in [9] under the restriction of having the impurity, that is to say the point pertur-
bation, situated at the origin. Hence, the Hamiltonian was given by the self-adjoint operator
making sense of the heuristic expression (see [9]):

Hβ = H0 − βδ(~x), H0 =
1

2

3∑
i=1

(
− d2

dx2
i

+ x2
i

)
=

3∑
i=1

a+
i ai +

3

2
(2.1)

(ai and its adjoint being the usual annihilation and creation operators associated with H0).
The eigenfunctions of H0, the Hamiltonian of the three-dimensional harmonic oscillator,

can clearly be expressed in terms of those of their one-dimensional counterparts, namely:

Ψ~n(~x) = ψn1(x)ψn2(y)ψn3(z).

Although, in this case, the radial symmetry of the model could obviously be exploited,
as was done in [1], we adhere to the Cartesian framework used in [9] in view of our prospective
investigation of the model in which H0 is perturbed by two attractive deltas. Before moving
forward, it is crucial to notice that the function:

(H0 − E)−1(0, ~x) =
∞∑
|~n|=0

Ψ2~n(0)(
|2~n|+ 3

2
− E

)Ψ2~n(~x) (2.2)

is square integrable. In fact, by considering without loss of generality only negative values
of E, by means of Parseval’s identity, we obtain the following estimate:

∞∑
|~n|=0

Ψ2
2~n(0)(

|2~n|+ 3
2
− E

)2 ≤
∞∑
|~n|=0

Ψ2
2~n(0)(

2n1 + 1
2

)2/3 (
2n2 + 1

2

)2/3 (
2n3 + 1

2

)2/3
=

[
∞∑
n=0

ψ2
2n(0)

(2n+ 1/2)2/3

]3

<∞,

(2.3)

taking into account the well-known pointwise decay of the harmonic oscillator eigenfunctions
(see, e.g., [12, 13]), precisely that lim

n→∞
n1/4ψn(x) <∞, for any fixed x.

As was shown in [9], using the coupling constant renormalization procedure, Hβ is
rigorously defined (for any β different from zero) by means of its resolvent, namely:

(Hβ − E)−1 = (H0 − E)−1 +
|(H0 − E)−1(·, 0)〉〈(H0 − E)−1(0, ·)|

β−1 − E
[∑∞

|~n|=0

Ψ2
2~n

(0)

(|2~n|+ 3
2)(|2~n|+ 3

2
−E)

] , (2.4)

for any negative E below E0 (β), the ground state energy (lowest eigenvalue) of Hβ , that is to
say the first root of the equation:
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β−1 = E

 ∞∑
|~n|=0

Ψ2
2~n(0)(

|2~n|+ 3
2

) (
|2~n|+ 3

2
− E

)
 (2.5)

as was done in [9] (and in similar contexts in [2, 8, 10, 11]), the series on the right hand side
of (2.5) can be recast as an integral. This can be achieved by taking advantage of two crucial
properties that will be exploited throughout this work: the well-known integral relationship
between the resolvent and the semigroup of any semibounded operator for any E below the
lowest point in the spectrum (see, e.g., [14] page 204), as well as the fact that the integral
kernel of the semigroup of the three-dimensional harmonic oscillator is perfectly separable
(see [1] page 1278), such that (2.5) reads for any E < 3/2:

β−1 =
1√
π3

∞∫
0

e
3
2
t
(
eEt − 1

)
(e2t − 1)

3
2

dt, (2.5a)

or equivalently,

β−1 =
1√
π3

∞∫
0

e−
3
2
t
(
eEt − 1

)
(1− e−2t)

3
2

dt. (2.5b)

By means of a simple change of variable inside the latter integral, (2.5b) can be rewritten as an
integral over a bounded interval (involving Mehler’s kernel):

β−1 =
1√
π3

1∫
0

ξ
1
2

(
ξ−E − 1

)
(1− ξ2)

3
2

dξ. (2.5c)

By setting α = 1/β and

α0 = β−1
0 =

1√
π3

1∫
0

1− ξ 1
2

(1− ξ2)
3
2

dξ =
Γ(3/4)

π · Γ(1/4)
∼= 0.107585,

(2.5c) can be further transformed into:

α− α0 =
1√
π3

1∫
0

ξ
1
2
−E − 1

(1− ξ2)3/2
dξ. (2.5d)

In perfect analogy with what was done in the aforementioned articles, the integral on
the right hand side can be converted into a ratio of Gamma functions as follows:

α0 − α =
Γ(3

4
− E

2
)

πΓ(1
4
− E

2
)
. (2.5e)

It is crucial to realize that (2.5e) holds also to the right of E = 3/2, enabling us to
determine all the eigenvalues and not only the ground state energy. Of course, our analysis in
this work is entirely consistent with what was observed in [9] (see the final remark in [2] as
well). The graph of the ground state energy as a function of the extension parameter α = 1/β
is shown below (Fig. 1). As is evident, E0(α)→ 3/2 as α→ +∞.
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FIG. 1. The ground state energy of the 3D-isotropic harmonic oscillator per-
turbed by an attractive point interaction situated at the origin as a function of the
extension parameter α = 1/β

At this stage, it might be worth recalling that the corresponding bound state equation for
the one-dimensional Hamiltonian:

h(α) = h1/α =
1

2

(
− d2

dx2
+ x2

)
− 1

α
|δ′(x)〉〈δ′(x)|,

defined rigorously by means of its resolvent in two different ways in [2, 3], is instead:

α1D
0 − α = 2

Γ
(

3
4
− E

2

)
Γ
(

1
4
− E

2

) , α1D
0 = 2

Γ(3/4)

Γ(1/4)
∼= 0.675978. (2.6)

Conversely, the corresponding bound state equation for the one-dimensional Hamiltonian is:

h(λ) =
1

2

(
− d2

dx2
+ x2

)
− λδ(x) =

1

2

(
− d2

dx2
+ x2

)
− λ|δ(x)〉〈δ(x)|,

taking account of the obvious identity in the sense of quadratic forms between the δ-interaction,
namely the quadratic form |δ〉 〈δ|, and the so-called δ-potential (whose quadratic form is in-
stead (·, δ·)), reads:

λ = 2
Γ
(

3
4
− E

2

)
Γ(1

4
− E

2
)
, (2.7)

(see [2, 8, 15]).
The fact that (2.7), unlike (2.5e) and (2.6), involves only the coupling constant is a

clear manifestation of the fact that h(λ) can be easily defined by means of the KLMN theorem
(see [16]) without the renormalization required for the other two models.

The higher energy levels are even more interesting, as they exhibit the phenomenon
called “level crossing”. As was pointed out in [2] (see also a similar remark in [9]): “as a

consequence of the presence of the point perturbation acting only on states with zero angular

momentum, the
(2l + 1) (2l + 2)

2
-degeneracy of the eigenvalue E2l = 2l +

3

2
gets lowered by

one due to the emergence of the simple eigenvalue generated by the perturbation. Such a
simple eigenvalue, regarded as a function of the extension parameter α, does cross the next

lower unperturbed eigenvalue E2l−1 = (2l − 1) +
3

2
”.



Spectral properties of a symmetric three-dimensional quantum dot . . . 273

As can be seen in Fig. 2, it is quite noteworthy that all these level crossings take place
exactly at α = α0 (approximately equal to 0.107585), adopting the renormalization used in [9].
As was stressed in [2]:

“by using instead the alternative renormalization (3.6), the location of all the level
crossings would be exactly α̃(3)=0, leading to the graph shown in Fig. 4(a) of the aforemen-
tioned paper by Brüning, Geyler and Lobanov”.

FIG. 2. The ground state energy and the next two symmetric eigenenergies of
the 3D-isotropic harmonic oscillator with an attractive δ-perturbation situated at
the origin as functions of the extension parameter α = 1/β

The very same phenomenon observed in [2] for the one-dimensional Hamiltonian h(α),
for which all the level crossings take place exactly at α = α

(1D)
0 (approximately equal to

0.675978) using the renormalization (2.4a) of that paper, is to be regarded as being even more
remarkable. Citing again our considerations in [2], it can be stated that:

“from the point of view of the structure of the spectral curves representing the eigen-
values (energy levels) as functions of the extension parameter and neglecting the degeneracy of
the three-dimensional eigenvalues, the harmonic oscillator perturbed by the point interaction
considered here (|δ′(x)〉〈δ′(x)|) seems to be a more legitimate one-dimensional counterpart
than the delta distribution as the latter bears no resemblance of the 3D-level crossing involving
eigenstates of different symmetry. Having stated that analogy, an important difference must
also be pointed out: whilst in the case of the perturbed isotropic oscillator the eigenenergy
of the simple eigenvalue created by the point interaction (emerging out of a degenerate level
with an even value of the total angular momentum) can cross the next lower unperturbed level
(having an odd value of the total angular momentum) beyond a certain threshold of the key
parameter of that model, something of an opposite nature occurs in the one-dimensional model
being studied here: each perturbed odd eigenvalue can fall below the next lower unperturbed
even eigenvalue beyond a certain threshold. As a consequence, the symmetry of the ground
state wave function can change in the case of a sufficiently strong δ′-interaction (the ground
state wave function being given by an odd function discontinuous at the origin)”.

The spectral features of the Hamiltonian for our perturbed isotropic oscillator described
in the previous remarks can be visualized in the above graph (Fig. 2) displaying the new ground
state energy E0(α) and those of the two symmetric bound states E2(α) and E4(α) which
emerge from the 7/2 and 11/2 levels as a result of the perturbation and are confined inside the
intervals (3/2, 7/2) and (7/2, 11/2), as functions of the extension parameter, as well as their
level crossings with the unperturbed antisymmetric states E = 5/2 and E = 9/2. Both of these
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occur, as anticipated above, at α = α0 (approximately equal to 0.107585). It is worth reminding
the reader that the degeneracy of E = 7/2 has been lowered to five and that of E = 11/2 to
fourteen.

3. The three-dimensional isotropic harmonic oscillator perturbed by two twin
attractive point perturbations symmetrically situated with respect to the origin

We wish to continue our analysis of the three-dimensional model by considering the
heuristic Hamiltonian:

H{β,~x0} = H0 − β [δ(~x− ~x0) + δ(~x+ ~x0)] , ~x0 = (x0, 0, 0) , x0 > 0. (3.1)

As pointed out in the final remarks in [17] (see also the references therein), the model
with a singular double well has been increasingly utilized in the recent condensed matter theory
literature “since, in combination with a cubic nonlinearity, it leads to a particular type of the
nonlinear Schrödinger equation for Bose-Einstein condensates (Gross-Pitaevskii equation)”.

By essentially mimicking what was done in [2, 9], we can start by performing the
standard ultraviolet cut-off and making the coupling µ = µ(`, β) > 0 dependent upon the
related upper limit 0 < ` < +∞ for the energy, which leads to the introduction of a perfectly
defined self-adjoint Hamiltonian:

H{`,β,~x0} = H0 − µ(`, β)
∑̀

|~l|=0,|~m|=0

∣∣Ψ~l

〉 [
Ψ~l (~x0) Ψ~m (~x0) + Ψ~l (−~x0) Ψ~m (−~x0)

]
〈Ψ~m|, (3.2)

which implies that for any sufficiently negative E we can write:

H{`,β,~x0} − E =(H0 − E)1/2
{
I − µ(`, β)

[∣∣(H`
0 − E)−1/2(·,−~x0)

〉〈
(H`

0 − E)−1/2(−~x0, ·)
∣∣+∣∣(H`

0 − E)−1/2(·, ~x0)
〉〈

(H`
0 − E)−1/2(~x0, ·)

∣∣]}(H0 − E)1/2.

(3.3)
Therefore, in order to explicitly write the resolvent of the left hand side of (3.2), it is

crucial to determine the inverse of the operator inside the curly brackets on the right hand side
of (3.3). We wish to remind the reader that the expression of the resolvent given by the inverse
of (3.3) is known as Tiktopoulos’ formula, commonly used in dealing with perturbations of
semibounded operators (see, e.g., Theor. VIII.25 in [18]). It is worth noting that in the latter
expansion of the resolvent the crucial role is played by an operator of the type:

(A+ I)−1/2(An − A)(A+ I)−1/2, A ≥ 0,

which is isospectral to the more widely investigated Birman-Schwinger operator (see, e.g., [19,
20] in the case of perturbations of the negative Laplacian in one dimension). In perfect analogy
with what was done in [7, 11, 17], it is possible to rewrite the operator of rank two inside the
square brackets on the right hand side of (3.3) as follows:∣∣(H`

0 − E)−1/2(·,−~x0)
〉 〈

(H`
0 − E)−1/2(−~x0, ·)

∣∣+
∣∣(H`

0 − E)−1/2(·, ~x0)
〉 〈

(H`
0 − E)−1/2(~x0, ·)

∣∣ =

2
[∣∣(H`

0 − E)−1/2
s (·, ~x0)

〉 〈
(H`

0 − E)−1/2
s (~x0, ·)

∣∣+
∣∣(H`

0 − E)−1/2
as (·, ~x0)

〉 〈
(H`

0 − E)−1/2
as (~x0, ·)

∣∣],
(3.4)

where

(H`
0 − E)−1/2

s (~x0, ~x) :=
∑̀
|~n|=0

Ψ2~n(~x0)(
|2~n|+ 3

2
− E

)1/2
Ψ2~n(~x),

(H`
0 − E)−1/2

as (~x0, ~x) :=
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∑̀
|~n|=0

ψ2n1+1(x0)ψ2n2(0)ψ2n3(0)(
2n1 + 2n2 + 2n3 + 5

2
− E

)1/2
ψ2n1+1(x)ψ2n2(y)ψ2n3(z),

which implies their mutual orthogonality.
By essentially mimicking what was done in the aforementioned papers, it is rather

straightforward to obtain the algebra for the powers of the rank-two operator on the right hand
side of (3.4):{

2
[∣∣(H`

0 − E)−1/2
s (·, ~x0)

〉〈
(H`

0 − E)−1/2
s (~x0, ·)

∣∣+∣∣(H`
0 − E)−1/2

as (·, ~x0)
〉〈

(H`
0 − E)−1/2

as (~x0, ·)
∣∣]}m+1

=

2m+1
{ [

(H`
0 − E)−1

s (~x0, ~x0)
]m ∣∣(H`

0 − E)−1/2
s (·, ~x0)

〉 〈
(H`

0 − E)−1/2
s (~x0, ·)

∣∣+[
(H`

0 − E)−1
as (~x0, ~x0)

]m ∣∣(H`
0 − E)−1/2

as (·, ~x0)
〉〈

(H`
0 − E)−1/2

as (~x0, ·)
∣∣}, (3.5)

given that: ∥∥∥(H`
0 − E)−1/2

s (~x0, ·)
∥∥∥2

2
=
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2
− E

=
(
H`

0 − E
)−1

s
(~x0, ~x0),

and similarly for the square of the norm of
(
H`

0 − E
)−1/2

as
(~x0, ·). Hence, the inverse of the

operator inside the curly brackets of (3.3) can be written as a new rank-two operator:

1
1

2µ(`,β)
−
(
H`

0 − E
)−1

s
(~x0, ~x0)

∣∣∣(H`
0 − E

)−1/2

s
(·, ~x0)

〉〈(
H`

0 − E
)−1/2

s
(~x0, ·)

∣∣∣+
1

1
2µ(`,β)

−
(
H`

0 − E
)−1

as
(~x0, ~x0)

∣∣∣(H`
0 − E

)−1/2

as
(·, ~x0)

〉〈(
H`

0 − E
)−1/2

as
(~x0, ·)

∣∣∣. (3.6)

Therefore, the inverse of the operator on the left hand side of (3.3) is:(
H{`,β,~x0} − E

)−1
= (H0 − E)−1 +

1
1

2µ(`,β)
−
(
H`

0 − E
)−1

s
(~x0, ~x0)

∣∣∣(H`
0 − E

)−1

s
(·, ~x0)

〉〈(
H`

0 − E
)−1

s
(~x0, ·)

∣∣∣+
1

1
2µ(`,β)

−
(
H`

0 − E
)−1

as
(~x0, ~x0)

∣∣∣(H`
0 − E

)−1

as
(·, ~x0)

〉〈(
H`

0 − E
)−1

as
(~x0, ·)

∣∣∣. (3.7)

At this stage, we need to thoroughly investigate what occurs when the ultraviolet cut-off
gets removed, that is to say the behavior of (3.7) as `→ +∞.

As a consequence of the simple estimate:

∑̀
|~n|=0

Ψ2
2~n(~x0)(

|2~n|+ 3
2
− E

)2 ≤
∞∑
|~n|=0

Ψ2
2~n(~x0)(

|2~n|+ 3
2
− E

)2 ≤[
∞∑
n=0

ψ2
2n(x0)

(2n+ 1/2)2/3

][
∞∑
n=0

ψ2
2n(0)

(2n+ 1/2)2/3

]2

<∞, (3.8)
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it is immediate to realize that
(
H`

0 − E
)−1

s
(~x0, ·) will converge in the Hilbert space norm to the

following:

(H0 − E)−1
s (~x0, ~x) :=

∞∑
|~n|=0

Ψ2~n(~x0)

|2~n|+ 3
2
− E

Ψ2~n(~x). (3.9)

The latter convergence implies in a straightforward manner that the rank-one operator:∣∣∣(H`
0 − E

)−1

s
(·, ~x0)

〉〈(
H`

0 − E
)−1

s
(~x0, ·)

∣∣∣,
will converge in the trace class norm to the following:∣∣(H0 − E)−1

s (·, ~x0)
〉〈

(H0 − E)−1
s (~x0, ·)

∣∣.
Similarly, it follows that:∣∣∣(H`

0 − E
)−1

as
(·, ~x0)

〉〈(
H`

0 − E
)−1

as
(~x0, ·)

∣∣∣→ ∣∣(H0 − E)−1
as (·, ~x0)

〉〈
(H0 − E)−1

as (~x0, ·)
∣∣,

with

(H0 − E)−1
as (~x0, ~x) :=

∞∑
|~n|=0

ψ2n1+1(x0)ψ2n2(0)ψ2n3(0)(
2n1 + 2n2 + 2n3 + 5

2
− E

)1/2
ψ2n1+1(x)ψ2n2(y)ψ2n3(z). (3.10)

Therefore, the only problem caused by the removal of the ultraviolet cut-off is the
divergence of the series inside each denominator in the second and third term on the right hand
side of (3.7). However, we still have the freedom of choosing the `-dependence of µ(`, β) in
such a way that the typical “cancellation of infinities” may take place. Let us set:

1

µ(`, β)
=

1

β
+
∑̀
|~n|=0

Ψ2
2~n(0)

|2~n|+ 3
2

, (3.11)

or equivalently:

µ(`, β) = β

1 + β
∑̀
|~n|=0

Ψ2
2~n(0)

|2~n|+ 3
2

−1

. (3.11b)

In perfect accordance with the use of the term “attractive” in [2, 3, 9, 17], it is clear that
µ(`, β) > 0 for the large values of ` involved in the limit, regardless of the sign of β. This
makes the singular interaction attractive because of the presence of the negative sign in the
second term in (3.2). Hence, for any E < 3/2:

1

2µ(`, β)
−
(
H`

0 − E
)−1

s
(~x0, ~x0) =

1

2β
+

1

2

∑̀
|~n|=0

Ψ2
2~n(0)

|2~n|+ 3
2

−
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2
− E

, (3.12)

and

1

2µ(`, β)
−
(
H`

0 − E
)−1

as
(~x0, ~x0) =

1

2β
+

1

2

∑̀
|~n|=0

Ψ2
2~n(0)

|2~n|+ 3
2

−
∑̀
|~n|=0

ψ(x0)2
2n1+1ψ

2
2n2

(0)ψ2
2n3

(0)

2n1 + 2n2 + 2n3 + 5
2
− E

, (3.12a)

(as will be seen shortly, considered separately, the latter expression is well defined for any
E < 5/2).

By taking advantage of the integral representation for the resolvent of the three-dimensional
harmonic oscillator for any E < 3/2, that is to say the aforementioned Mehler’s kernel, as well



Spectral properties of a symmetric three-dimensional quantum dot . . . 277

as of the explicit expressions of the symmetric and antisymmetric components of the integral
kernel of the semigroup for the one-dimensional harmonic oscillator established in [11], the
limit of the right hand side of (3.12), as `→ +∞ can be written as:

1

2β
+

1

2π3/2

 1∫
0

ξ
1
2

(1− ξ2)3/2
dξ −

1∫
0

ξ
1
2
−E
[
e−x

2
0
1−ξ
1+ξ + e−x

2
0
1+ξ
1−ξ

]
(1− ξ2)3/2

dξ

 =

1

2β
+

1

2π3/2

1∫
0

ξ1/2
[
1− ξ−E

(
e−x

2
0
1−ξ
1+ξ + e−x

2
0
1+ξ
1−ξ

)]
(1− ξ2)3/2

dξ <∞.

(3.13)

Similarly, for any E < 5/2, the limit of the other denominator is given by:

1

2β
+

1

2π3/2

1∫
0

ξ1/2
[
1− ξ−E

(
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)]
(1− ξ2)3/2

dξ <∞, (3.13a)

taking into account that, as pointed out in [11], we have:

ξ−1
(
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)
→ 4x2

0,

as ξ → 0+, which implies that ξ1/2−E
(
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)
has an integrable singularity at 0+

as long as E < 5/2.

Hence, for any x0 > 0 and any E < 3/2 (resp. E < 5/2), the difference of the two
divergent series on the right hand side of (3.12) (resp. (3.12a)) yields a finite limit. Then, it is
not difficult to prove that, as a consequence of the first resolvent identity, the same holds at any
other point away from σ(H0).

Therefore, the norm resolvent limit of (3.7) after removing the ultraviolet cut-off is given
by:

(H0 − E)−1 +

∣∣(H0 − E)−1
s (·, ~x0)

〉〈
(H0 − E)−1

s (~x0, ·)
∣∣

1

2β
+ lim

`→+∞

1

2

∑̀
|~n|=0

Ψ2
2~n(0)

|2~n|+ 3
2

−
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2
− E

+

∣∣(H0 − E)−1
as (·, ~x0)

〉〈
(H0 − E)−1

as (~x0, ·)
∣∣

1

2β
+ lim

`→+∞

1

2

∑̀
|~n|=0

Ψ2
2~n(0)

|2~n|+ 3
2

−
∑̀
|~n|=0

ψ2
2n1+1(x0)ψ2

2n2
(0)ψ2

2n3
(0)

2n1 + 2n2 + 2n3 + 5
2
− E

 . (3.14)
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In particular, for any E < 3/2, we have the following integral representation:

(H0 − E)−1 +

∣∣(H0 − E)−1
s (·, ~x0)

〉〈
(H0 − E)−1

s (~x0, ·)
∣∣

1

2β
+

1

2π3/2

1∫
0

ξ1/2
[
1− ξ−E

(
e−x

2
0
1−ξ
1+ξ + e−x

2
0
1+ξ
1−ξ

)]
(1− ξ2)3/2

dξ

+

∣∣(H0 − E)−1
as (·, ~x0)

〉〈
(H0 − E)−1

as (~x0, ·)
∣∣

1

2β
+

1

2π3/2

1∫
0

ξ1/2
[
1− ξ−E

(
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)]
(1− ξ2)3/2

dξ

. (3.14a)

By essentially mimicking the proofs used in some of the above-mentioned papers [2, 9,
17], it can be rigorously shown that the latter operator is indeed the resolvent of a semibounded
self-adjoint operator for any E below E0(β), the lowest zero of the denominator in the second
term in (3.14) and (3.14a). Furthermore, the explicit form of the resolvent clearly implies its
analyticity in norm in close proximity to 0 (since we have an analytic family in the sense of
Kato, see [14, 21]) as a function of β.

The results obtained so far can thus be summarized in the following theorem.
Theorem 3.1. The rigorous Hamiltonian of the three-dimensional isotropic oscillator,

perturbed by two identical attractive point interactions situated symmetrically with respect
to the origin at the points ±~x0 = (±x0, 0, 0), x0 > 0, making sense of the merely formal
expression (3.1), is the self-adjoint operator H{β,~x0} whose resolvent is given by the bounded
operator (3.14). The latter is the limit of the resolvents (3.7) (of the Hamiltonians with the
energy cut-off defined by (3.2)) in the norm topology of bounded operators on L2(R3) once the
energy cut-off is removed. Furthermore, H{β,~x0}, regarded as a function of β, is an analytic
family in the sense of Kato.

Of course, unlike the Hamiltonian analyzed in Section 2, we can no longer hope to have
the bound state equation expressed in terms of a ratio of Gamma functions.

Nevertheless, since the limit of the difference of the divergent series appearing in the
first (resp. second) denominator of (3.14) gives rise to a smooth multibranch function of the
energy parameter, with its vertical asymptotes given by the symmetric (resp. antisymmetric)
eigenvalues of the unperturbed Hamiltonian, we can rely on the findings of [8–11] to have it
expressed in terms of an integral that will have to be suitably modified for each single level in
order to avoid the unpleasant appearance of divergences.

Remark. In perfect accordance with what was observed in [10] for the analogous
one-dimensional model with a single point impurity centered away from the origin, and in [11]
for the model having a pair of twin impurities symmetrically situated with respect to the origin,
it is worth pointing out that whenever the location of the impurities coincides with a node of
an eigenfunction for the one-dimensional harmonic oscillator (here we are obviously excluding
the trivial case x0 = 0), then the corresponding eigenenvalue will not be affected at all by the
singular perturbation. In other words, if

ψ2m1(x0) = 0, x0 > 0 (respectively ψ2m1+1(x0) = 0),

then

Ψ2~m(~x), ~m = (m1,m2,m3) (resp. ψ2m1+1(x)ψ2m2(y)ψ2m3(z)t)
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belongs to the kernel of the first (resp. second) rank-one operator in (3.14) and the corre-
sponding eigenvalue

|2~m|+ 3

2

(
resp. 2m1 + 2m2 + 2m3 +

5

2

)
will stay in the spectrum with its original multiplicity.

Hence, for any E < 3/2, the equation determining the ground state energy is given by:

1

β
=

1

π3/2

1∫
0

ξ1/2
[
ξ−E

(
e−x

2
0
1−ξ
1+ξ + e−x

2
0
1+ξ
1−ξ

)
− 1
]

(1− ξ2)3/2
dξ. (3.15)

By setting α = 1/β and

α+
0 (x0) =

1

π3/2

1∫
0

(
e−x

2
0
1−ξ
1+ξ + e−x

2
0
1+ξ
1−ξ

)
− ξ1/2

(1− ξ2)3/2
dξ <∞, (3.15a)

the equation can be exactly recast in a manner that is completely analogous to (2.5d), that is to
say:

α− α+
0 (x0) =

1

π3/2

1∫
0

(
ξ1/2−E − 1

) (
e−x

2
0
1−ξ
1+ξ + e−x

2
0
1+ξ
1−ξ

)
(1− ξ2)3/2

dξ. (3.15b)

The graph for the solution of the above equation, i.e. the ground state energy as a function of
the extension parameter, is shown below in Fig. 3 for x0 = 0.2.

FIG. 3. The ground state energy for the 3D-isotropic harmonic oscillator per-
turbed by a pair of identical attractive point interactions symmetrically situated at
a distance x0 = 0.2 from the origin as a function of the extension parameter
α = 1/β

Similarly, the equation determining the energy of the lowest antisymmetric bound state
for any E < 5/2, namely:

1

β
=

1

π3/2

1∫
0

ξ1/2
[
ξ−E

(
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)
− 1
]

(1− ξ2)3/2
dξ, (3.16)
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after setting

α−0 (x0) =
1

π3/2

1∫
0

(
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)
− ξ1/2

(1− ξ2)3/2
dξ <∞, (3.16a)

can be recast as:

α− α−0 (x0) =
1

π3/2

1∫
0

(
ξ1/2−E − 1

) (
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)
(1− ξ2)3/2

dξ. (3.16b)

The graph for the solution of the above equation, representing the energy of the lowest anti-
symmetric bound state as a function of the extension parameter, is shown below in Fig. 4 for
x0 = 0.2.

FIG. 4. The energy for the lowest antisymmetric bound state of the 3D-isotropic
harmonic oscillator perturbed by a pair of identical attractive point interactions
symmetrically situated at a distance x0 = 0.2 from the origin as a function of the
extension parameter α = 1/β

By further exploiting the technique developed in the aforementioned papers [8–11] to
obtain cancellation of the divergences as we move to the right of E = 3/2, we can also study
the equation determining the second symmetric bound state energy.

Given that:

lim
`→+∞

1

2

∑̀
|~n|=0

Ψ2
2~n(0)

|2~n|+ 3
2

−
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2
− E

 =

1

2

Ψ2
0(0)

3/2
− Ψ2

0(~x0)

3/2− E
+ lim

`→+∞

1

2

∑̀
|~n|=1

Ψ2
2~n(0)

|2~n|+ 3
2

−
∑̀
|~n|=1

Ψ2
2~n(~x0)

|2~n|+ 3
2
− E

 , (3.17)

and

Ψ2
0(0)

3/2
=

1

π3/2

1∫
0

ξ1/2dξ,
Ψ2

0(x0)

3/2− E
=
e−x

2
0

π3/2

1∫
0

ξ1/2−Edξ,
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the equation determining the second symmetric bound state energy is given by:

1

β
=

2e−x
2
0

(3/2− E)π3/2
− 2

3π3/2
+

1

π3/2

1∫
0

ξ1/2
[
(1− ξ2)3/2 − 1

]
(1− ξ2)3/2

dξ+

1

π3/2

1∫
0

ξ1/2−E
[
e−x

2
0(1−ξ)/(1+ξ) + e−x

2
0(1+ξ)/(1−ξ) − 2e−x

2
0(1− ξ2)3/2

]
(1− ξ2)3/2

dξ. (3.18)

Since the quantity

e−x
2
0(1−ξ)/(1+ξ) + e−x

2
0(1+ξ)/(1−ξ) − 2e−x

2
0
(
1− ξ2

)3/2

behaves like cξ2 + O(ξ4) in the region to the right of the origin, it is quite evident that the
numerator inside the second integral on the right hand side of (3.18) has an integrable singularity
at the lower limit of integration for any E < 7/2, that is to say the third eigenvalue of the
unperturbed 3D-isotropic harmonic oscillator. One can immediately notice that both integrals
on the right hand side of (3.18) diverge as ξ → 1−. However, by rewriting their sum as:

1

π3/2

1∫
0

ξ1/2
{

(1− ξ2)
3/2 − 1− ξ−E

[
2e−x

2
0 (1− ξ2)

3/2 − e−x20(1−ξ)/(1+ξ) − e−x20(1+ξ)/(1−ξ)
]}

(1− ξ2)3/2
dξ,

it is a bit tedious but straightforward to check that:

ξ1/2
{

(1− ξ2)
3/2 − 1− ξ−E

[
2e−x

2
0 (1− ξ2)

3/2 − e−x20(1−ξ)/(1+ξ) − e−x20(1+ξ)/(1−ξ)
]}

1− ξ2
→ LE <∞,

as ξ → 1−, which implies the integrable nature of the singularity at the upper limit of integration
and, therefore, the cancellation of the two divergent quantities on the right hand side of (3.18).
Hence, for any 3/2 < E < 7/2, the equation determining the second symmetric bound state
energy can be recast as:

1

β
=

2e−x
2
0

(3/2− E)π3/2
− 2

3π3/2
+

1

π3/2
×

1∫
0

ξ1/2
{

(1− ξ2)
3/2 − ξ−E

[
2e−x

2
0 (1− ξ2)

3/2 − e−x20(1−ξ)/(1+ξ) − e−x20(1+ξ)/(1−ξ)
]}

(1− ξ2)3/2
dξ. (3.18a)

The latter equation can be further transformed into:

α− α+
0 (x0) =

2e−x
2
0

(3/2− E) π3/2
− 2

3π3/2
+

1

π3/2
×[ 1∫

0

ξ1/2
{

(1− ξ2)
3/2 − ξ−E

[
2e−x

2
0 (1− ξ2)

3/2 − e−x20(1−ξ)/(1+ξ) − e−x20(1+ξ)/(1−ξ)
]}

(1− ξ2)3/2
dξ+

1∫
0

−e−x20(1−ξ)/(1+ξ) − e−x20(1+ξ)/(1−ξ)

(1− ξ2)3/2
dξ

]
. (3.18b)

Figure 5 shows the plot for the counterpart of Fig. 2 for x0 = 0.2 with the five lowest
eigenvalues, namely E0(α), E1(α), E2(α) (clearly omitting their dependence on x0 to make the
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notation less cumbersome), the new eigenenergies created by the pair of twin point interactions,
in addition to 5/2 and 7/2, whose degeneracy has now been lowered to two and five respectively.

FIG. 5. The ground state energy and the next two eigenenergies created by two
identical attractive δ-perturbations situated symmetrically at the same distance
from the origin, x0 = 0.2, as functions of the extension parameter α = 1/β

It is worth stressing that, in addition to level crossings of the same type as those
encountered in the aforementioned articles [1,9], which occur in the case of a single δ-impurity,
involving the new eigenvalues created by the point perturbations and the eigenvalues of the
unperturbed harmonic oscillator preserved under the perturbation due to their degeneracy, two
further level crossings of a new type involving E1(α) and E2(α) (the two new energy levels
created by the singular double-well perturbation above the ground state one), can be observed
at the values α2 (approximately equal to −0.126478) and α3 (approximately equal to 0.309201).
It seems rather remarkable to us that, for such a small value of the distance x0, there is a
range of values for the extension parameter α, namely the interval (α2, α3), inside which
E2(α) < E1(α). In other words, when the coupling is sufficiently strong (taking account of
the fact that α = 1/β) and the distance between the two centers is sufficiently small (this
point will be made more precise shortly), the second symmetric bound state created by the
singular perturbation can become more tightly bound than the lowest antisymmetric bound
state. Furthermore, the energy level created by the perturbation at α2 (resp. α3) is doubly
degenerate, since E1(α2) = E2(α2) (resp. E1(α3) = E2(α3)).

In addition to the value α4 (approximately equal to 0.356236), where E2(α) = 5/2, it
is also worth including the value α1 (approximately equal to −0.198151) where E1(α) = 3/2,
even though E = 3/2 is no longer an eigenvalue. Then, the spectral features displayed in Fig. 5
can be summarized in Table 1.

Next, we will show how an increase in x0 affects the energy levels considered before. As
clearly shown by the comparison between the graph of the ground state energy as a function of α
in Fig. 6 for x0 = 0.4 and its analogue in Fig. 3 for x0 = 0.2, we have E0(α; 0.2) < E0(α; 0.4)
for any α.

Although we cannot strictly use the definition of “positional disorder” given in [1] for
the 3D-isotropic quantum dot with a single impurity because of the presence of the vector
−~x0 in our model, we, nevertheless, believe that the concept is still valid in the sense that
the greater the distance between the two impurities is, the less localized the ground state will
be. It might be worth noting that this is in full agreement with our findings in some of the
aforementioned papers [7, 11, 17] on one-dimensional singular double wells (see also [10]).
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TABLE 1. The ordering of the five lowest eigenvalues over the corresponding
five intervals of the extension parameter for x0 = 0.2

α < α1 E0(α) < E1(α) < 3/2 < E2(α) < 5/2

α1 ≤ α < α2 E0(α) < 3/2 ≤ E1(α) < E2(α) < 5/2

α2 ≤ α < α3 E0(α) < 3/2 < E2(α) ≤ E1(α) < 5/2

α3 ≤ α < α4 E0(α) < 3/2 < E1(α) ≤ E2(α) < 5/2

α4 ≤ α E0(α) < 3/2 < E1(α) < 5/2 ≤ E2(α) < 7/2

FIG. 6. The ground state energy of the 3D-isotropic harmonic oscillator perturbed
by a pair of identical attractive point interactions symmetrically situated at a
distance x0 = 0.4 from the origin as a function of the extension parameter
α = 1/β

The graph of the lowest antisymmetric eigenvalue created by the singular double well
when the separation distance becomes x0 = 0.4 is also provided below (Fig.7).

We now wish to provide the analog of Fig. 5 for x0 = 0.3 (Fig. 8).

As can be clearly seen in the plot, a remarkable change in the energy spectrum has
now occurred: for any value of the extension parameter we have E1(α) < E2(α), that is
to say, the new energy levels created by the double well perturbation completely avoid each
other, borrowing the terminology used in articles such as [22] on the spectral phenomenon
called “level repulsion” or “avoided level crossing”. Of course, we still have the level crossing
between E2(α) and 5/2, the antisymmetric eigenvalue of the 3D-isotropic harmonic oscillator
whose degeneracy has now been lowered to two by the perturbation.

The threshold value of x0, denoted by Xt in the following, can be determined by ob-
serving that for that particular value, the two spectral curves E1(α,Xt) and E2(α,Xt) must
have the same value as well as the same partial derivative with respect to the extension parame-
ter α. Hence, Xt is the second coordinate of the point representing the solution of the following
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FIG. 7. The energy for the lowest antisymmetric bound state of the 3D-isotropic
harmonic oscillator perturbed by a pair of identical attractive point interactions
symmetrically situated at a distance x0 = 0.4 from the origin as a function of the
extension parameter α = 1/β

FIG. 8. The ground state energy and the next two eigenenergies created by two
attractive δ-perturbations situated symmetrically at the same distance from the
origin, x0 = 0.3, as functions of the extension parameter α = 1/β

system: 
E1(α, x0) = E2(α, x0);

∂

∂α
E1(α, x0) =

∂

∂α
E2(α, x0).

(3.19)

For any fixed value of the distance x0, the function E1(α, x0) with domain given by the
entire real axis and range (−∞, 5/2) has its inverse given by α1(E, x0) with domain (−∞, 5/2)
and range equal to the entire real axis.

Similarly, if we restrict E2(α, x0) to the domain (−∞, α∗] and range (−∞, 5/2], with
E2(α∗, x0) = 5/2, its inverse function is α2(E, x0) with domain (−∞, 5/2] and range (−∞, α∗].
Both functions can actually be written in terms of explicit integrals and functions:

α1(E, x0) =
1

π3/2

1∫
0

ξ1/2
[
ξ−E

(
e−x

2
0
1−ξ
1+ξ − e−x

2
0
1+ξ
1−ξ

)
− 1
]

(1− ξ2)3/2
dξ,
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α2(E, x0) =
2e−x

2
0

(3/2− E)π3/2
− 2

3π3/2
+

1

π3/2
×

1∫
0

ξ1/2
{

(1− ξ2)
3/2 − 1− ξ−E

[
2e−x

2
0 (1− ξ2)

3/2 − e−x20(1−ξ)/(1+ξ) − e−x20(1+ξ)/(1−ξ)
]}

(1− ξ2)3/2
dξ

(of course, we could alternatively use (3.16b) and (3.18b)).
Consequently, also taking into account the well-known theorem on the derivative of

the inverse function, instead of obtaining Xt by solving the system (3.19), it is easier from a
computational point of view to derive its value by solving the system:

α1(E, x0) = α2(E, x0);

∂

∂E
α1(E, x0) =

∂

∂E
α2(E, x0).

(3.19a)

The numerical solution of (3.19a) is the point with coordinates E = Et (approximately
equal to 2.29949), x0 = Xt (approximately equal to 0.2339644), where both functions α1 and α2

attain the value αt (approximately equal to 0.0829). The plot of the tangential contact between
the two spectral curves for x0 = Xt is provided below in Fig. 9.

FIG. 9. The curves of the two eigenenergies E1(α,Xt) and E2(α,Xt) (Xt being
approximately equal to 0.2339644) intersecting each other tangentially at α = αt
(approximately equal to 0.0829)

Hence, what has been seen regarding the three different spectral configurations for the
two energy levels E1(α, x0) and E2(α, x0) can be summarized by means of the following
Table 2, which clearly shows the role played by the threshold value x0 = Xt.

The table thus makes our earlier statement written below Fig. 5 more precise: for
any x0 < Xt, there exists an interval (α2(x0), α3(x0)) (using the same indices used above)
of values for the extension parameter α (or equivalently of its reciprocal β) for which
E2(α, x0) < E1(α, x0). In other words, as the values of |α| in that range are rather small
(α2(0.2) approximately equal to −0.126478 and α3(0.2) approximately equal to 0.309201 in our
previous example) and the corresponding values of |β| are large, such a singular configuration
of those two eigenvalues (energy levels), characterized by having the second excited symmetric



286 S. Albeverio, S. Fassari and F. Rinaldi

TABLE 2. The three possible configurations involving the two energy levels
E1(α, x0) and E2(α, x0) as the distance parameter x0 varies

x0 < Xt
∼= 0.2339644

two distinct intersections between
E1(α, x0) and E2(α, x0)

x0 = Xt
∼= 0.2339644,

αt ∼= 0.0829
one tangential intersection between

E1(α, x0) and E2(α, x0)

x0 > Xt
∼= 0.2339644

no intersection since
E1(α, x0) < E2(α, x0)

bound state more tightly bound than the lowest antisymmetric one, can only occur by shrink-
ing the distance between the two impurities below the threshold and raising their strength.
Moreover, it can be seen that the interval expands as x0 shrinks to zero.

Therefore, it might be fair to say that a wider separation of the two zero-range impurities
makes the structure of the spectrum more similar to that of the unperturbed isotropic harmonic
oscillator. As a matter of fact, it is not difficult to convince oneself that, for any fixed value
of the coupling β (or, equivalently, of the extension parameter α), the denominators of both
rank-one operators in (3.14) or (3.14a) are bound to diverge as x0 → +∞. Hence, the resolvent
of our Hamiltonian will approach that of the 3D-isotropic harmonic oscillator in the limit
x0 → +∞. As a result, that is in perfect agreement with its one-dimensional counterpart
established in Theorem 2.2(a) in [11].

However, a sharp contrast with the one-dimensional model occurs for the opposite
limit analyzed in Theorem 2.2(b) in [11]. In fact, by noting that the right hand sides of both
(3.15) and (3.16) become divergent as x0 → 0+, it is clear that the lowest eigenvalue of our
Hamiltonian will decrease without any lower bound as the distance shrinks to zero. Therefore,
in sharp contrast with the one-dimensional case, we cannot expect in the limit x0 → 0+ to
obtain the operator studied in Section 2 with the strength of the point interaction doubled. It
might also be worth reminding the reader that, as is well known to Quantum Chemistry students,
three-dimensional interactions with a nonzero range do not manifest this singular behavior as
the distance between the two centers shrinks to zero, as the classical textbook example of H+

2

smoothly approaching He+ in the limit R→ 0+ clearly shows (see [23–25]).

The same singular spectral phenomenon has been recently observed in [17] where an-
other model requiring a renormalization procedure, that is to say the one-dimensional Salpeter
Hamiltonian with a double well of identical attractive point interactions, was investigated. Our
spectral finding in this work confirms the general conjecture formulated in the above-mentioned
paper that, when we deal with point interactions requiring the renormalization of the coupling
constant (either because of the higher dimension or because of the different kinetic term), we
must inevitably give up “the intuitive idea that in the limit (x0 → 0+) the eigenvalue should
approach the ground state energy pertaining to a single delta with double strength”.

In analogy with what was proved in [17], it will be shown in a forthcoming paper
that the only possible way of obtaining the expected behavior in the limit also in the case
of the operator investigated in this work is to make the coupling constant µ(`, β) used in the
renormalization procedure suitably dependent on the separation distance x0.
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4. Conclusions and perspectives

After reviewing the spectral features of a three-dimensional isotropic quantum dot with
an attractive point impurity situated at the origin (the bottom of the confining harmonic po-
tential), a model investigated in papers such as [1, 9, 26], the model in which a pair of twin
attractive point impurities gets inserted into the 3D-isotropic quantum dot has been studied by
first defining in a rigorous manner the self-adjoint Hamiltonian representing the energy operator
for such a model. Since the energy eigenvalues are given by the poles of the resolvent, its
explicit expression has enabled us to start the spectral analysis of the model. Although the
bound state equation no longer has the simple expression involving a ratio of Gamma functions,
as was the case in the presence of a single impurity centered at the origin, it is still possible to
carry out, at least conceptually, the required spectral analysis.

Here, we have restricted our task to a rather detailed description of the behavior of
the lowest lying spectrum eigenvalues (energy levels) with respect to variations of the two
key parameters of the model, one labeling the self-adjoint extensions of the operator (or its
reciprocal) and the other one given by the distance between either impurity and the origin.

The important spectral phenomenon called ”positional disorder” singled out in [1] (see
also the references cited therein as well as [10]) in the case of a single point impurity located
away from the origin retains its validity in the sense that the more separated the twin impurities
are the less localized the ground state is.

In addition to the level crossings involving the spectral curve of each new singular
perturbation-created eigenenergy and the next lower eigenvalue of the unperturbed harmonic
oscillator (still present in the spectrum because of its degeneracy), another seemingly more
noteworthy spectral phenomenon occurs. There exists a threshold for the separation distance
between the twin impurities, above which, the spectral curve E2(α, x0), representing the energy
of the second symmetric bound state, lies entirely above E1(α, x0), the curve pertaining to the
energy for the lowest antisymmetric bound state. Below that threshold, there exists a range of
values of the extension parameter, which is physically characterized by being proportional to the
inverse scattering length, over which E2(α, x0) ≤ E1(α, x0), implying the existence of two new
types of level crossings. From the point of view of what could be called “spectral engineering”,
the latter implies that the second symmetric bound state can become more tightly bound than
the lowest antisymmetric bound state provided the separation distance is below the threshold
and the extension parameter is sufficiently small. At the threshold value we have shown the
existence of a single tangential intersection between the two spectral curves. As a consequence,
the narrower the separation between the impurities is, the wider the aforementioned range is.

The current analysis could be further extended to the next higher eigenvalues to explore
the existence of other distance thresholds leading to level crossings of the new type.

It has also been pointed out that, in full accordance with the findings of [17] for another
singular double well model requiring renormalization of the coupling constant, and in total
contrast to those of [11] for the one-dimensional counterpart of the model studied in this note,
not requiring the renormalization procedure, the limit of our Hamiltonian as the separation
distance shrinks to zero is not given by the Hamiltonian of the 3D-isotropic quantum dot with
a single point impurity centered at the origin having twice the strength. It is our intention to
prove in a forthcoming paper that the expected behavior in the limit can be achieved by making
the coupling constant used in the renormalization procedure also dependent on the separation
distance.

Finally, we also intend to extend our investigation to the two-dimensional counterpart of
the model given the growing relevance of that dimension in Nanophysics, as attested by some
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contributions to the relevant literature, such as [27–30]. Of course, as can be seen in the case
of the 2D-isotropic quantum dot with a single impurity, fully studied in [31], some logarithmic
divergences, which are typical of two-dimensional Quantum Mechanics, are inevitably bound to
arise.
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The self-adjoint Schrödinger operator Aδ,α with a δ-interaction of constant strength α supported on a compact

smooth hypersurface C is viewed as a self-adjoint extension of a natural underlying symmetric operator S in

L2(Rn). The aim of this note is to construct a boundary triple for S∗ and a self-adjoint parameter Θδ,α in the

boundary space L2(C) such that Aδ,α corresponds to the boundary condition induced by Θδ,α. As a consequence,

the well-developed theory of boundary triples and their Weyl functions can be applied. This leads, in particular, to

a Krein-type resolvent formula and a description of the spectrum of Aδ,α in terms of the Weyl function and Θδ,α.
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1. Introduction

Boundary triples and their Weyl functions are efficient and frequently used tools in the
extension theory of symmetric operators and the spectral analysis of their self-adjoint extensions.
Roughly speaking, a boundary triple consists of two boundary mappings that satisfy an abstract
second Green’s identity and a maximality condition. With the help of a boundary triple, all
self-adjoint extensions of a symmetric operator can be parameterized via abstract boundary
conditions that involve a self-adjoint parameter in a boundary space. In addition, the spectral
properties of these self-adjoint extensions can be described with the help of the Weyl function
and the corresponding boundary parameters. We refer the reader to [1–5] and Section 2 for
more details on boundary triples and their Weyl functions.

The main objective of this note is to provide and discuss boundary triples and their
Weyl functions for self-adjoint Schrödinger operators in L2(Rn) with δ-interactions of strength
α ∈ R supported on a compact smooth hypersurface C that separates Rn into a smooth bounded
domain Ωi and an unbounded smooth exterior domain Ωe. In an informal way, such an operator
is often written in the form

Aδ,α = −∆− αδC, (1)
where δC denotes the δ-distribution supported on C. A precise definition of the self-adjoint
operator Aδ,α in terms of boundary or interface conditions is given at the beginning of Section 3
below; see also [6, 7] for an equivalent definition via quadratic forms. Schrödinger operators
with δ-interactions are frequently used in mathematical physics to model interactions of quantum
particles; we refer to the monographs [8] and [9], to the review article [10] and to [6, 11–25]
for a small selection of related papers on spectral analysis of such operators.
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Let Afree be the usual self-adjoint realization of −∆ in L2(Rn) and let Aδ,α be the
self-adjoint operator with δ-interaction on C in (1). We consider the densely defined, closed
symmetric operator S = Afree ∩Aδ,α in L2(Rn) and its adjoint S∗, and we construct a boundary
triple {L2(C),Γ0,Γ1} for S∗ and a self-adjoint parameter Θδ,α in L2(C) such that

Afree = S∗ � ker Γ0 and Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0).

Although it is clear from the general theory that such a boundary triple and a self-adjoint
parameter Θδ,α exist, its construction is not trivial. Our idea here is based on a coupling
of two boundary triples for elliptic PDEs which involve the Dirichlet-to-Neumann map as a
regularization (see [26–28]), the restriction of this coupling to a suitable intermediate extension,
and certain transforms of boundary triples and corresponding parameters. These efforts and
technical considerations are worthwhile for various reasons. In particular, if γ and M denote the
γ-field and Weyl function corresponding to the boundary triple {L2(C),Γ0,Γ1} (see Section 2
for more details), then it follows immediately from the general theory in [3,4] that the resolvent
difference of Afree and Aδ,α admits the representation

(Aδ,α − λ)−1 − (Afree − λ)−1 = γ(λ)
(
Θδ,α −M(λ)

)−1
γ(λ̄)∗

for all λ ∈ ρ(Aδ,α) and belongs to some operator ideal in L2(Rn) if and only if the resolvent
of Θδ,α belongs to the analogous operator ideal in L2(C); see Theorem 3.5. As a special case,
the Schatten–von Neumann properties of the resolvent difference of Afree and Aδ,α carry over to
the resolvent of Θδ,α, and vice versa. Moreover, the spectral properties of Aδ,α can be described
with the help of the perturbation term (Θδ,α −M(λ))−1. We mention that in the context of
the more general notion of quasi boundary triples and their Weyl functions from [29, 30] a
similar approach as in this note and closely related results can be found in [6,31]; we also refer
to [27, 28, 32–37] for other methods in extension theory of elliptic differential operators.

2. Boundary triples and Weyl functions

In this preparatory section, we recall the notion of boundary triples, associated γ-fields
and Weyl functions, and discuss some of their properties. For a more detailed exposition, we
refer the reader to [1–5, 38].

In the following, let H be a Hilbert space, let S be a densely defined, closed symmetric
operator in H, and let S∗ be the adjoint operator.

Definition 2.1. A triple {G,Γ0,Γ1} is called a boundary triple for S∗ if G is a Hilbert space
and Γ0,Γ1 : domS∗ → G are linear mappings that satisfy the abstract second Green’s identity

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

for all f, g ∈ domS∗, and the mapping Γ := (Γ0,Γ1)> : domS∗ → G × G is surjective.

Recall that a boundary triple {G,Γ0,Γ1} for S∗ exists if and only if the defect numbers
of S coincide or, equivalently, S admits self-adjoint extensions in H. Moreover, a boundary
triple is not unique (except in the trivial case S = S∗). The following special observation
will be used in Section 3: suppose that {G,Γ0,Γ1} is a boundary triple for S∗ and let G be a
bounded self-adjoint operator in G; then {G,Γ′0,Γ′1}, where(

Γ′0
Γ′1

)
=

(
I G
0 I

)(
Γ0

Γ1

)
, (2)

is also a boundary triple for S∗. Recall also that domS = ker Γ0 ∩ ker Γ1 and that the mapping

Θ 7→ AΘ := S∗ �
{
f ∈ domS∗ : Γf = (Γ0f,Γ1f)> ∈ Θ

}
(3)
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establishes a bijective correspondence between the closed linear subspaces (relations) in G × G
and the closed linear extensions AΘ ⊂ S∗ of S. In the case when Θ is (the graph of) an
operator, the closed extension AΘ in (3) is given by

AΘ = S∗ � ker(Γ1 −ΘΓ0). (4)

It is important to note that the identity (AΘ)∗ = AΘ∗ holds and hence AΘ in (3)–(4) is self-
adjoint in H if and only if Θ is self-adjoint in G. It follows, in particular, that the extension

A0 = S∗ � ker Γ0 (5)

is self-adjoint. This extension often plays the role of a fixed extension within the family of
self-adjoint extensions of S. We also mention that Θ in (3) is an unbounded operator if and
only if the extensions A0 and AΘ are disjoint but not transversal, that is,

S = AΘ ∩ A0 and AΘ +̂A0 ( S∗, (6)

where +̂ denotes the sum of subspaces. Note that this appears only in the case when G is
infinite-dimensional, that is, the defect numbers of S are both infinite.

The next theorem can be found in [39]. Very roughly speaking, it can be regarded as
converse to the above considerations. Here, the idea is to start with boundary mappings defined
on the domain of some operator T that satisfy the abstract second Green’s identity and some
additional conditions, and to conclude that T coincides with the adjoint of the restriction of T
to the intersection of the kernels of the boundary mappings. Theorem 2.2 will be used in the
proof of Lemma 3.1.

Theorem 2.2. Let T be a linear operator in H, let G be a Hilbert space and assume that
Γ0,Γ1 : domT → G are linear mappings that satisfy the following conditions:

(i) there exists a self-adjoint restriction A0 of T in H such that domA0 ⊂ ker Γ0;
(ii) ran(Γ0,Γ1)> = G × G;
(iii) for all f, g ∈ domT the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds.

Then S := T � (ker Γ0 ∩ ker Γ1) is a densely defined, closed, symmetric operator in H such
that S∗ = T and {G,Γ0,Γ1} is a boundary triple for S∗ with the property A0 = S∗ � ker Γ0.

In the following, we assume that S is a densely defined, closed, symmetric operator in
H and that {G,Γ0,Γ1} is a boundary triple for S∗. Let A0 = S∗ � ker Γ0 be as in (5) and
observe that the following direct sum decomposition of domS∗ is valid:

domS∗ = domA0 +̇ ker(S∗ − λ) = ker Γ0 +̇ ker(S∗ − λ), λ ∈ ρ(A0).

It follows, in particular, that Γ0 � ker(S∗ − λ) is a bijective operator from ker(S∗ − λ) onto G.
The inverse is denoted by

γ(λ) =
(
Γ0 � ker(S∗ − λ)

)−1
, λ ∈ ρ(A0);

when viewed as a function λ 7→ γ(λ) on ρ(A0), we call γ the γ-field corresponding to the
boundary triple {G,Γ0,Γ1}. The Weyl function M associated with {G,Γ0,Γ1} is defined by

M(λ) = Γ1γ(λ) = Γ1

(
Γ0 � ker(S∗ − λ)

)−1
, λ ∈ ρ(A0).

It can be shown that the values M(λ) of the Weyl function M are bounded, everywhere defined
operators in G, that M is a holomorphic function on ρ(A0) with the properties M(λ) = M(λ̄)∗

and that ImM(λ) is uniformly positive for λ ∈ C+, i.e. M is an operator-valued Nevanlinna or
Riesz–Herglotz function that is uniformly strict; see [2].
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3. Schrödinger operators with δ-interactions on hypersurfaces

Let Ωi ⊂ Rn, n ≥ 2, be a bounded domain with C∞-smooth boundary C = ∂Ωi and
let Ωe = Rn \ Ωi be the corresponding exterior domain with the same C∞-smooth boundary
∂Ωe = C. In the following, fi|C and fe|C denote the traces of functions in Ωi and Ωe, respec-
tively; if fi|C = fe|C , we also set f |C := fi|C = fe|C . Moreover, ∂νifi|C and ∂νefe|C denote
the traces of their normal derivatives; here we agree that the normal vectors νi and νe point
outwards of the domains, so that, νi = −νe.

In the following, let α 6= 0 be a real constant and consider the Schrödinger operator with
a δ-interaction of strength α supported on C defined by

Aδ,αf = −∆f,

domAδ,α =

{
f =

(
fi
fe

)
∈ H2(Ωi)×H2(Ωe),

fi|C = fe|C,
αf |C = ∂νifi|C + ∂νefe|C

}
.

(7)

According to [6, Theorem 3.5 and Theorem 3.6] the operator Aδ,α is self-adjoint in L2(Rn) and
corresponds to the densely defined, closed sesquilinear form

aδ,α[f, g] =
(
∇f,∇g

)
(L2(Rn))n

− α(f |C, g|C)L2(C),

dom aδ,α = H1(Rn).

Observe that the normal derivatives of the functions in domAδ,α may have a jump at the
interface C or, more precisely, that f ∈ domAδ,α is contained in H2(Rn) if and only if
∂νifi|C = −∂νefe|C . We also recall that the essential spectrum of the operator Aδ,α is [0,∞)
and that the negative spectrum consists of a finite number of eigenvalues of finite multiplicity;
see [6, 7]. In the following, we fix some point η such that

η ∈ ρ(Aδ,α) ∩ (−∞, 0). (8)

In Proposition 3.3 below, we specify a boundary triple {L2(C),Γ0,Γ1} for the adjoint of
the densely defined, closed, symmetric operator

Sf = −∆f, domS =
{
f ∈ H2(Rn) : f |C = 0

}
, (9)

such that the free or unperturbed Schrödinger operator

Afreef = −∆f, domAfree = H2(Rn),

corresponds to the kernel of the first boundary mapping Γ0. Note that the operator Aδ,α in (7) is
a self-adjoint extension of S and that the defect numbers dim(ran(S ∓ i)⊥) are infinite. Hence,
the abstract considerations in Section 2 ensure that there exists a self-adjoint operator or relation
Θδ,α such that

Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0). (10)

The parameter Θδ,α and further properties of the operator Aδ,α will be discussed in Lemma 3.4
and Theorem 3.5 below.

Some further notations and preparatory results are required before Proposition 3.3 can
be stated and proved. Consider the densely defined, closed, symmetric operators

Sifi = −∆fi, domSi = H2
0 (Ωi),

and
Sefe = −∆fe, domSe = H2

0 (Ωe),

in L2(Ωi) and L2(Ωe), respectively. Their adjoints are given by the maximal operators

S∗i fi = −∆fi, domS∗i =
{
fi ∈ L2(Ωi) : −∆fi ∈ L2(Ωi)

}
,
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and

S∗efe = −∆fe, domS∗e =
{
fe ∈ L2(Ωe) : −∆fe ∈ L2(Ωe)

}
,

where the expressions −∆fi and −∆fe are understood in the sense of distributions. It is
important to note that H2(Ωi) and H2(Ωe) are proper subsets of the maximal domains domS∗i
and domS∗e , respectively, and that the symmetric operator S in (9) is an infinite-dimensional
extension of the orthogonal sum Si ⊕ Se, which is also a symmetric operator in L2(Rn) =
L2(Ωi) ⊕ L2(Ωe). Recall from [27, 40] that the trace maps admit continuous extensions to the
maximal domains (equipped with the graph norms):

domS∗i 3 fi 7→ fi|C ∈ H−1/2(C), domS∗i 3 fi 7→ ∂νifi|C ∈ H−3/2(C),

and

domS∗e 3 fe 7→ fe|C ∈ H−1/2(C), domS∗e 3 fe 7→ ∂νefe|C ∈ H−3/2(C).
Furthermore, consider the self-adjoint extensions ADi and ADe of Si and Se, respectively, corre-
sponding to Dirichlet boundary conditions on C:

ADi fi = −∆fi, domADi = H1
0 (Ωi) ∩H2(Ωi),

and

ADe fe = −∆fe, domADe = H1
0 (Ωe) ∩H2(Ωe).

Since ADi and ADe are both non-negative, it is clear that η in (8) belongs to ρ(ADi )∩ ρ(ADe ), and
hence, we have the direct sum decompositions

domS∗i = domADi +̇ ker(S∗i − η) =
(
H1

0 (Ωi) ∩H2(Ωi)
)

+̇ ker(S∗i − η) (11)

and

domS∗e = domADe +̇ ker(S∗e − η) =
(
H1

0 (Ωe) ∩H2(Ωe)
)

+̇ ker(S∗e − η). (12)

We agree to decompose functions fi ∈ domS∗i and fe ∈ domS∗e in the form

fi = fDi + f ηi and fe = fDe + f ηe , (13)

where fDi ∈ domADi , f ηi ∈ ker(S∗i − η), and fDe ∈ domADe , f ηe ∈ ker(S∗e − η).
In the following, we often make use of the operators

ι = (−∆C + I)
1
4 and ι−1 = (−∆C + I)−

1
4 ,

where ∆C denotes the Laplace–Beltrami operator on C. Both mappings ι and ι−1 are regarded
as isomorphisms

ι : Hs(C)→ Hs−1
2 (C) and ι−1 : H t(C)→ H t+

1
2 (C)

for s, t ∈ R, and also as operators that establish the duality

(ιϕ, ι−1ψ)L2(C) = 〈ϕ, ψ〉H1/2(C)×H−1/2(C)

for ϕ ∈ H1/2(C) and ψ ∈ H−1/2(C), when the spaces H1/2(C) and H−1/2(C) are equipped with
the corresponding norms. Note also that ι−1 can be viewed as a bounded self-adjoint operator
in L2(C) with ran ι−1 = H1/2(C) and that ι with domain dom ι = H1/2(C) is an unbounded
self-adjoint operator in L2(C) with 0 ∈ ρ(ι).

Now we have finally collected all necessary notation to state the first lemma.
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Lemma 3.1. Let S be the densely defined, closed, symmetric operator in (9). Then the adjoint
S∗ of S is given by

S∗f = −∆f,

domS∗ =

{
f =

(
fi
fe

)
∈ domS∗i × domS∗e , fi|C = fe|C

}
.

(14)

Further, let

Υ0f = ι−1f |C and Υ1f = −ι
(
∂νif

D
i |C + ∂νef

D
e |C
)

(15)

for f = (fi, fe)
> ∈ domS∗ and with fDi , f

D
e as in (13). Then {L2(C),Υ0,Υ1} is a boundary

triple for S∗ with the property ADi ⊕ ADe = S∗ � ker Υ0.

Proof. The assertions in Lemma 3.1 will be proved with the help of Theorem 2.2. To this end,
we set

Tf = −∆f,

domT =

{
f =

(
fi
fe

)
∈ domS∗i × domS∗e , fi|C = fe|C

}
,

and consider the boundary mappings Υ0,Υ1 : domT → L2(C) in (15). First of all, we note
that item (i) in Theorem 2.2 is satisfied with the self-adjoint operator A0 = ADi ⊕ ADe since
for any function f = (fi, fe)

> ∈ dom(ADi ⊕ ADe ) ⊂ H2(Ωi) × H2(Ωe) one has fi ∈ domS∗i ,
fe ∈ domS∗e , and fi|C = fe|C . In order to see that the mapping(

Υ0

Υ1

)
: domT → L2(C)× L2(C) (16)

is surjective, let ϕ, ψ ∈ L2(C). Since the Neumann trace map is surjective from H2(Ωi)∩H1
0 (Ωi)

onto H1/2(C) and from H2(Ωe) ∩ H1
0 (Ωe) onto H1/2(C), there exist fDi ∈ domADi and fDe ∈

domADe such that ∂νif
D
i |C = ∂νef

D
e |C = −1

2
ι−1ψ ∈ H1/2(C). Next, we choose f ηi ∈ ker(S∗i −η)

and f ηe ∈ ker(S∗e − η) such that f ηi |C = f ηe |C = ιϕ ∈ H−1/2(C), which is possible by the
surjectivity of the trace map from the maximal domain onto H−1/2(C); cf. [27, 40, 41]. Now, it
is easy to see that f = (fDi + f ηi , f

D
e + f ηe )> ∈ domT satisfies

Υ0f = ι−1f |C = ϕ and Υ1f = −ι
(
∂νif

D
i |C + ∂νef

D
e |C
)

= ψ,

and hence the map (16) is onto. Next, we verify that the abstract second Green’s identity

(Tf, g)L2(Rn) − (f, Tg)L2(Rn) = (Υ1f,Υ0g)L2(C) − (Υ0f,Υ1g)L2(C), f, g ∈ domT, (17)

holds. For this, it is useful to recall that Green’s identity for fi = fDi + f ηi and gi = gDi + gηi
yields

(S∗i fi, gi)L2(Ωi)−(fi, S
∗
i gi)L2(Ωi)

=
〈
fi|C, ∂νigDi |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νif

D
i |C, gi|C

〉
H1/2(C)×H−1/2(C),

(18)

and for fe = fDe + f ηe and ge = gDe + gηe in the analogous form

(S∗efe, ge)L2(Ωe)−(fe, S
∗
ege)L2(Ωe)

=
〈
fe|C, ∂νegDe |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νef

D
e |C, ge|C

〉
H1/2(C)×H−1/2(C).

(19)
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Since T is a restriction of the orthogonal sum S∗i ⊕ S∗e and fi|C = fe|C , gi|C = ge|C for
f, g ∈ domT , we conclude from (18) and (19) that

(Tf, g)L2(Rn) − (f, Tg)L2(Rn)

= (S∗i fi, gi)L2(Ωi) − (fi, S
∗
i gi)L2(Ωi) + (S∗efe, ge)L2(Ωe) − (fe, S

∗
ege)L2(Ωe)

=
〈
fi|C, ∂νigDi |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νif

D
i |C, gi|C

〉
H1/2(C)×H−1/2(C)

+
〈
fe|C, ∂νegDe |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νef

D
e |C, ge|C

〉
H1/2(C)×H−1/2(C)

=
〈
f |C, ∂νigDi |C + ∂νeg

D
e |C
〉
H−1/2(C)×H1/2(C) −

〈
∂νif

D
i |C + ∂νef

D
e |C, g|C

〉
H1/2(C)×H−1/2(C)

=
(
ι−1f |C, ι(∂νigDi |C + ∂νeg

D
e |C)

)
L2(C) −

(
ι(∂νif

D
i |C + ∂νef

D
e |C), ι−1g|C

)
L2(C)

=
(
−ι(∂νifDi |C + ∂νef

D
e |C), ι−1g|C

)
L2(C) −

(
ι−1f |C,−ι(∂νigDi |C + ∂νeg

D
e |C)

)
L2(C)

= (Υ1f,Υ0g)L2(C) − (Υ0f,Υ1g)L2(C)

holds. Thus, (17) is shown and item (iii) in Theorem 2.2 is satisfied. Hence, Theorem 2.2
implies that the symmetric operator

Ŝ := T �
(
ker Υ0 ∩ ker Υ1) (20)

is densely defined, closed and its adjoint coincides with T . We show that Ŝ coincides with the
symmetric operator S in (9). Note first that Theorem 2.2 also implies that

ADi ⊕ ADe = T � ker Υ0. (21)

Both operators, S and Ŝ, are restrictions of the operator in (21). We now let f = (fi, fe)
> ∈

dom(ADi ⊕ ADe ) = ker Υ0. For such f , we have

f ∈ ker Υ1 ⇐⇒ ∂νifi|C + ∂νefe|C = 0 ⇐⇒ f ∈ H2(Rn) ⇐⇒ f ∈ domS.

Thus, Ŝ = S. Now, the remaining statements in Lemma 3.1 follow immediately from Theo-
rem 2.2. �

Next, we specify the Weyl function N and the γ-field ζ corresponding to the boundary
triple {L2(C),Υ0,Υ1} in Lemma 3.1. It is clear from the definition of Υ0 that the γ-field acts
as follows:

ζ(λ) : L2(C)→ L2(Rn), ϕ 7→ fλ, λ ∈ ρ(ADi ) ∩ ρ(ADe ) = C \ [0,∞),

where fλ = (fi,λ, fe,λ)
> ∈ H2(Ωi)×H2(Ωe) satisfies −∆fi,λ = λfi,λ, −∆fe,λ = λfe,λ and

fi,λ|C = fe,λ|C = ιϕ.

In order to specify the Weyl function N , we recall the definition of the Dirichlet-to-Neumann
maps Di(λ) and De(λ) associated with the Laplacians on Ωi and Ωe, respectively. Note first
that for ϕ, ψ ∈ H−1/2(C) and λ ∈ ρ(ADi ) and µ ∈ ρ(ADe ) the boundary value problems

−∆fi = λfi, fi|C = ϕ and −∆fe = µfe, fe|C = ψ

admit unique solutions fi,λ ∈ domS∗i and fe,µ ∈ domS∗e . Hence, the operators

Di,−1/2(λ)fi,λ|C = ∂νifi,λ|C, domDi,−1/2(λ) = H−1/2(C), (22)

and

De,−1/2(µ)fe,µ|C = ∂νefe,λ|C, domDe,−1/2(µ) = H−1/2(C), (23)
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are well defined, and map H−1/2(C) into H−3/2(C). We have used the index −1/2 in the
definition of the Dirichlet-to-Neumann maps in (22) and (23) to indicate that their domain is
H−1/2(C). For the following, it is important that the restrictions

Di(λ)fi,λ|C = ∂νifi,λ|C, domDi(λ) = H1(C),
and

De(µ)fe,µ|C = ∂νefe,µ|C, domDe(µ) = H1(C),
of Di,−1/2(λ) and De,−1/2(µ) to H1(C) are densely defined, closed, unbounded operators in
L2(C) that satisfy

Di(λ)∗ = Di(λ̄) and De(µ)∗ = De(µ̄)

for all λ ∈ ρ(ADi ) and for all µ ∈ ρ(ADe ), respectively. For λ ∈ ρ(ADi )∩ ρ(ADe ) = C \ [0,∞), it
is convenient to introduce the operators

E−1/2(λ) := Di,−1/2(λ) +De,−1/2(λ) and E(λ) := Di(λ) +De(λ). (24)

Furthermore, the restrictions of Di,−1/2(λ) and De,−1/2(µ) to H3/2(C) will be used. These
restrictions are denoted by Di,3/2(λ) and De,3/2(µ), respectively; they map H3/2(C) into H1/2(C),
and as above the index 3/2 is used to indicate that their domain is H3/2(C).

Lemma 3.2. Let S be the symmetric operator in (9), let {L2(C),Υ0,Υ1} be the boundary triple
for S∗ in Lemma 3.1 and fix η as in (8). For λ ∈ ρ(ADi ) ∩ ρ(ADe ) = C \ [0,∞) the operators
E−1/2(λ) in (24) have the property

ran
(
E−1/2(λ)− E−1/2(η)

)
⊂ H1/2(C) (25)

and the Weyl function corresponding to the boundary triple {L2(C),Υ0,Υ1} is given by

N(λ) = −ι
(
E−1/2(λ)− E−1/2(η)

)
ι, λ ∈ C \ [0,∞).

Proof. Let λ ∈ ρ(ADi ) ∩ ρ(ADe ) and let fλ = (fi,λ, fe,λ) ∈ ker(S∗ − λ). Then fi,λ|C = fe,λ|C and
according to (11)–(13) we have

fi,λ = fDi,λ + f ηi,λ and fe,λ = fDe,λ + f ηe,λ,

where fDi,λ ∈ domADi , f ηi,λ ∈ ker(S∗i − η), fDe,λ ∈ domADe and f ηe,λ ∈ ker(S∗e − η). Hence, it
follows with the help of fi,λ|C = f ηi,λ|C and fe,λ|C = f ηe,λ|C , and the definition of the Dirichlet-
to-Neumann maps that(

E−1/2(λ)− E−1/2(η)
)
ιΥ0fλ

=
(
Di,−1/2(λ)−Di,−1/2(η) +De,−1/2(λ)−De,−1/2(η)

)
fλ|C

= Di,−1/2(λ)fi,λ|C −Di,−1/2(η)f ηi,λ|C +De,−1/2(λ)fe,λ|C −De,−1/2(η)f ηe,λ|C
= ∂νifi,λ|C − ∂νif

η
i,λ|C + ∂νefe,λ|C − ∂νef

η
e,λ|C

= ∂νi
(
fi,λ − f ηi,λ

)
|C + ∂νe

(
fe,λ − f ηe,λ

)
|C

= ∂νif
D
i,λ|C + ∂νef

D
e,λ|C

(26)

and hence

−ι
(
E−1/2(λ)− E−1/2(η)

)
ιΥ0fλ = −ι

(
∂νif

D
i,λ|C + ∂νef

D
e,λ|C

)
= Υ1fλ.

Also, the inclusion (25) follows from (26) since fDi,λ ∈ H2(Ωi) and fDe,λ ∈ H2(Ωe), and hence,
∂νif

D
i,λ|C + ∂νef

D
e,λ|C ∈ H1/2(C) in (26), and for any

ϕ ∈ dom E−1/2(λ) = dom E−1/2(η) = H−1/2(C),
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there exists fλ = (fi,λ, fe,λ)
> ∈ ker(S∗ − λ) and fη = (fi,η, fe,η) ∈ ker(S∗ − η) such that

fi,λ|C = fe,λ|C = ϕ = fi,η|C = fe,η|C.
�

In the following proposition, we provide a boundary triple for S∗ such that the operator
Afree corresponds to the first boundary mapping. For this, we modify the boundary triple in
Lemma 3.1 in a suitable manner.

Proposition 3.3. Let S be the densely defined, closed, symmetric operator in (9) with adjoint
S∗ in (14), and let E(η) = ιE(η)ι. Then, E(η)−1 is a bounded self-adjoint operator in L2(C)
and {L2(C),Γ0,Γ1}, where

Γ0f = ι−1f |C + E(η)−1ι
(
∂νif

D
i |C + ∂νef

D
e |C
)

and Γ1f = −ι
(
∂νif

D
i |C + ∂νef

D
e |C
)
, (27)

is a boundary triple for S∗ with the property Afree = S∗ � ker Γ0. For λ ∈ C \ [0,∞) the Weyl
function corresponding to {L2(C),Γ0,Γ1} is given by

M(λ) = −ι
(
E−1/2(λ)− E−1/2(η)

)
ι
(
I + E(η)−1ι

(
E−1/2(λ)− E−1/2(η)

)
ι
)
.

Proof. First, we show that E(η)−1 = ι−1E(η)−1ι−1 is a bounded self-adjoint operator in L2(C).
Observe that E(η) = Di(η) + De(η) is injective. In fact, we assume that E(η)ϕ = 0 for some
ϕ ∈ H1(C), ϕ 6= 0. Then, there exists fη = (f ηi , f

η
e )> ∈ ker(S∗ − η) such that fη|C = ϕ and

hence
0 = E(η)ϕ = E(η)fη|C = Di(η)f ηi |C +De(η)f ηe |C = ∂νif

η
i |C + ∂νef

η
e |C. (28)

Together with f ηi |C = f ηe |C , this implies that fη ∈ domAfree and hence ker(Afree − η) 6= {0}.
This is impossible, as η < 0. Thus E(η) is injective. It follows from [6, Proposition 3.2 (iii)]
that E(η) is surjective. Hence, E(η)−1 is a bounded self-adjoint operator in L2(C). Since ι−1

is also a bounded self-adjoint operator in L2(C), it is clear that E(η)−1 = ι−1E(η)−1ι−1 is a
bounded self-adjoint operator in L2(C).

Now, let {L2(C),Υ0,Υ1} be the boundary triple in Lemma 3.1. Note that the boundary
mappings Γ0 and Γ1 in (27) satisfy:(

Γ0

Γ1

)
=

(
I −E(η)−1

0 I

)(
Υ0

Υ1

)
.

Hence, it follows that {L2(C),Γ0,Γ1} is a boundary triple for S∗; see (2) in Section 2. Again,
we let N denote the Weyl function corresponding to the boundary triple {L2(C),Υ0,Υ1}. It is
not difficult to see that the Weyl function corresponding to {L2(C),Γ0,Γ1} is given by

M(λ) = N(λ)
(
I − E(η)−1N(λ)

)−1
, λ ∈ C \ [0,∞).

Hence, the form of the Weyl function M follows from Lemma 3.2.
It remains to be shown that Afree = S∗ � ker Γ0 holds. Assume that for some f ∈ domS∗

we have
ι−1f |C + E(η)−1ι

(
∂νif

D
i |C + ∂νef

D
e |C
)

= 0. (29)

As ker E−1/2(η) = {0} (this can be seen as in (28)), this is equivalent to

E−1/2(η)f |C +
(
∂νif

D
i |C + ∂νef

D
e |C
)

= 0.

Furthermore, since

E−1/2(η)f |C = Di,−1/2(η)f ηi |C +De,−1/2(η)f ηe |C = ∂νif
η
i |C + ∂νef

η
e |C

holds for f decomposed as in (13), we conclude that (29) is equivalent to

∂νif
η
i |C + ∂νef

η
e |C + ∂νif

D
i |C + ∂νef

D
e |C = 0,
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which in turn is equivalent to

∂νifi|C + ∂νefe|C = 0.

Therefore, f ∈ ker Γ0 if and only if f ∈ domAfree. �

Our next goal is to identify the self-adjoint parameter Θδ,α such that (10) holds with the
boundary triple in Proposition 3.3.

Lemma 3.4. Let S be the densely defined, closed, symmetric operator in (9) with adjoint S∗

in (14), and let {L2(C),Γ0,Γ1} be the boundary triple in Proposition 3.3. Then

Θδ,α = ι
(
Di,3/2(η) +De,3/2(η)− α

)
ι
(
I − E(η)−1ι

(
Di,3/2(η) +De,3/2(η)− α

)
ι
)−1

is an unbounded self-adjoint operator in L2(C) such that the Schrödinger operator Aδ,α in (7)
corresponds to Θδ,α, that is,

Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0). (30)

Proof. We make use of the fact that the boundary triple {L2(C),Υ0,Υ1} in Lemma 3.1 and the
boundary triple {L2(C),Γ0,Γ1} in Proposition 3.3 are related via

Γ0 = Υ0 − E(η)−1Υ1 and Γ1 = Υ1, (31)

and we also make use of the operator

Λδ,α = ι
(
Di,3/2(η) +De,3/2(η)− α

)
ι, dom Λδ,α = H2(C). (32)

Our first task is to show that

Aδ,α = S∗ � ker(Υ1 − Λδ,αΥ0) (33)

holds. In fact, f ∈ ker(Υ1 − Λδ,αΥ0) if and only if f ∈ domS∗ and

ι
(
Di,3/2(η) +De,3/2(η)− α

)
f |C = −ι

(
∂νif

D
i |C + ∂νef

D
e |C
)
,

where f |C ∈ domDi,3/2(η) = domDe,3/2(η) = H3/2(C), together with elliptic regularity, also
implies that f = (fi, fe)

> with fi ∈ H2(Ωi) and fe ∈ H2(Ωe). With f decomposed as in (13)
we have (

Di,3/2(η) +De,3/2(η)− α
)
f |C = ∂νif

η
i |C + ∂νef

η
e |C − αf |C.

Therefore, f ∈ ker(Υ1 − Λδ,αΥ0) if and only if f = (fi, fe)
> ∈ domS∗ with fi ∈ H2(Ωi) and

fe ∈ H2(Ωe) and

∂νif
η
i |C + ∂νef

η
e |C − αf |C = −

(
∂νif

D
i |C + ∂νef

D
e |C
)
,

and the latter can be rewritten in the form

∂νifi|C + ∂νefe|C = αf |C.

We have shown (33), and as Aδ,α is a self-adjoint operator in L2(Rn), it follows that Λδ,α in
(32) is an unbounded self-adjoint operator in L2(C).

Next, we consider the operator

Θδ,α = Λδ,α

(
I − E(η)−1Λδ,α

)−1
(34)

on its natural domain; note that ker(I − E(η)−1Λδ,α) = {0} as otherwise E(η)ϕ = Λδ,αϕ
for some non-trivial ϕ ∈ H2(C), which is a contradiction to α 6= 0. Now, we assume that
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f ∈ ker(Γ1 −Θδ,αΓ0). Then, (31) and (34) yield

Υ1f − Λδ,αΥ0f = Γ1f − Λδ,α

(
Γ0 + E(η)−1Υ1

)
f

= Γ1f − Λδ,α

(
Γ0 + E(η)−1Γ1

)
f

= Γ1f − Λδ,α

(
Γ0 + E(η)−1Θδ,αΓ0

)
f

= Γ1f − Λδ,α

(
I + E(η)−1Λδ,α

(
I − E(η)−1Λδ,α

)−1)
Γ0f

= Γ1f − Λδ,α

(
I − E(η)−1Λδ,α

)−1
Γ0f

= Γ1f −Θδ,αΓ0f

= 0,

and hence f ∈ ker(Υ1 − Λδ,αΥ0). The converse inclusion is shown in the same way and
therefore

ker(Γ1 −Θδ,αΓ0) = ker(Υ1 − Λδ,αΥ0)

and thus the extensions

S∗ � ker(Γ1 −Θδ,αΓ0) and S∗ � ker(Υ1 − Λδ,αΥ0),

coincide. Therefore, (33) implies (30). Since Aδ,α is self-adjoint in L2(Rn), it also follows from
(30) that Θδ,α is self-adjoint in L2(C). Moreover, as S in (9) coincides with the intersection of
Afree and Aδ,α, that is, Afree and Aδ,α are disjoint, and since Afree and Aδ,α are not transversal,
one concludes that Θδ,α is an unbounded operator in L2(C); cf. (6). �

We are now able to obtain some immediate and important consequences from the pre-
vious considerations, well-known results for boundary triples and Weyl functions [3, 4] and the
resolvent estimates in [6, 42].

Theorem 3.5. Let S be the densely defined, closed, symmetric operator in (9) with adjoint S∗

in (14), let {L2(C),Γ0,Γ1} be the boundary triple in Proposition 3.3 with

Afree = S∗ � ker Γ0,

and let γ and M be the γ-field and Weyl function corresponding to {L2(C),Γ0,Γ1}. Further-
more, let Θδ,α be as in Lemma 3.4 so that

Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0).

Then, the following assertions hold for all λ /∈ [0,∞):

(i) λ ∈ σp(Aδ,α) if and only if 0 ∈ σp(Θδ,α −M(λ));
(ii) λ ∈ ρ(Aδ,α) if and only if 0 ∈ ρ(Θδ,α −M(λ));
(iii) for all λ ∈ ρ(Aδ,α) the resolvent formula

(Aδ,α − λ)−1 − (Afree − λ)−1 = γ(λ)
(
Θδ,α −M(λ)

)−1
γ(λ̄)∗

is valid, and the resolvent difference of Aδ,α and Afree belongs to the Schatten–von
Neumann ideal Sp(L

2(Rn)) for all p > n−1
3

;
(iv) for all ξ ∈ ρ(Θδ,α) the operator (Θδ,α − ξ)−1 belongs to the Schatten–von Neumann

ideal Sp(L
2(C)) for all p > n−1

3
.
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1. Introduction

In this paper, we address the generation problem for the family of time-dependent
Hamiltonians Hγ(t), where Hγ(t), for any fixed real t, denotes the self-adjoint operator in L2(R)
describing a δ′-interaction of strength 1/γ(t) (see [1,2], [3, Chapter I.4] and references therein).

Most of the literature on time dependent point interactions focuses on perturbations of
the free dynamics of the form of a Dirac’s delta time dependent potential. In three dimensions
time dependent δ-interactions were studied in [4, 5] and in [6] in relation with the problem
of ionization under periodic perturbations, see also [7]. In two dimensions, very recently,
the problem of the well-posedness was studied in [8]. In one dimension, this kind of non-
autonomouss Hamiltonians was analyzed in [9], see also [10].

It is well known that in one dimension, the family of point perturbations of the Laplacian
is richer than in two and three dimensions, and includes δ and δ′ perturbations, as well as their
combinations. In this paper, we focus attention on the topical case of a time dependent δ′-
interaction.

We remark that time-dependent δ-interactions have a non-linear counterpart, see, e.g.,
[11–13] in three dimensions, and [14, 15]. More recently, a systematic study of the blow-up
in the one dimensional case was started in [16]. In one dimension, in particular, such models
find applications to the propagation of optical waves in Kerr media, or one-dimensional many
body systems, see, e.g., [17–20] and references therein. The problem of the derivation of
non-linear δ-interactions from scaled regular dynamics was recently studied in one- and three-
dimensions [21–23].

Several results discussed in the present paper set the groundworks for defining the non-
linear point interactions of δ′-type and for the study of the problem of their derivation from
scaled regular dynamics.
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We recall that the definition of Hγ is given by the theory of self-adjoint extensions of
the symmetric operator:

H◦ = −∆ ≡ − d2

dx2
, D(H◦) = C∞0 (R\{0}) ,

and, for any real γ, reads as follows:

Hγψ(x) = −d
2ψ

dx2
(x) , x 6= 0 , (1)

D(Hγ) = {ψ ∈ L2(R) : ψ = φ+ qη, φ ∈ X2, q ∈ C, φ′(0) = γq} , (2)

where η(x) :=
1

2
sgn(x) and for any ν ≥ 0 we defined Xν as the space of tempered distributions

with Fourier transform in L2(R, |k|2νdk).
We remark that if f ∈ Xν , then its Fourier transform might be a distribution as well.

Moreover, for ν = m + σ, with m integer and 1/2 < σ ≤ 1, if f ∈ Xν then f ∈ Cm(R), see
Prop. 2.1 below. Hence, φ in D(Hγ) is a C1(R) function and φ′(0) in the boundary condition
is well defined.

The action of the operator Hγ can be understood also by exploiting the decomposition
ψ = φ+ qη: this leads to

Hγψ(x) = −φ′′(x), x ∈ R. (3)

When γ(t) is assigned as a real valued function of time, the domain D(Hγ(t)) changes in
time with the boundary condition φ′(0) = γ(t)q. In contrast, the quadratic form corresponding
to Hγ is given by

Qγ(ψ) = ‖φ′‖2 + γ|q|2 ,
D(Qγ) = {ψ ∈ L2(R) : ψ = φ+ qη, φ ∈ X1, q ∈ C },

and so Qγ(t) has a time-independent domain. Thus, by the abstract results in [24] and [10],
assuming that the map t 7→ γ(t) is differentiable, there exists an unitary propagator Ut,s in
L2(R), continuously mapping D(Hγ(s)) onto D(Hγ(t)), such that ψ(t) := Ut,0ψ0 is the (strong)
solution of the Cauchy problem: i

d

dt
ψ(t) = Hγ(t)ψ(t)

ψ(0) = ψ0 ∈ D(Hγ(0)) .
(4)

However, as the case of time-dependent self-adjoint extensions Hα(t) (corresponding to a δ-in-
teraction) studied in [9] suggests, the quite explicit knowledge of the action and operator domain
of Hγ should allow one to solve the Cauchy problem (4) under weaker regularity conditions on
γ(t). Indeed, as we show in this paper, this is the case and problem (4) has a strong, unique
solution whenever the map t 7→ γ(t) is in the fractional Sobolev space H3/4(R), a condition
weaker than the differentiability hypotheses required in [24] and [10]. Such a H3/4 hypothesis
is the same required in the paper [9] in order to guarantee that the Cauchy problem for the
family Hα(t) has a strong solution. However, in contrast to [9], here we make use neither
of sophisticated analytic tools (paraproducts) nor of abstract generation theorems (as the ones
provided in [24] and [25]); instead, following the same strategy as in the paper [26], we apply
a more direct approach which exploits definitions (1) and (2), providing a relatively explicit
expression for the solution of (4) with initial datum ψ0 = φ0 + q0η in D(Hγ(0)):
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ψ(t) = φ(t) + q(t)η, (5)

with

φ(t) = eit∆φ0 −
t∫

0

ds q̇(s)ei(t−s)∆η , (6)

where t 7→ q(t) solves the Volterra-type integral equation

q(t) = f0(t)−
√

4i

π

t∫
0

ds
γ(s)q(s)√
t− s

(7)

and the source term f0 is defined as:

f0(t) := q0 +

√
4i

π

t∫
0

ds
(eis∆φ0)

′
(0)√

t− s
. (8)

We shall prove the following well-posedness result:

Theorem 1. Let T > 0, γ ∈ H3/4(0, T ), and set γ0 = γ(0). Let ψ0 = φ0 + q0η ∈ D(Hγ0).
Then, for any t ∈ [0, T ], there exists a unique strong solution for the Cauchy problem (4) given
by ψ(t) = φ(t) + q(t)η as in Eqs. (6) – (8). Moreover, the map t 7→ Hγ(t)ψ(t) belongs to
C([0, T ], L2(R)).

We briefly discuss the heuristic derivation of the solution. The solution of the Schrödinger
equation with Hγ as Hamiltonian satisfies the distributional equation:

i
∂

∂t
ψ(t) = −ψ′′(t) + q(t)δ′0, (9)

where δ′0 is the first derivative of the Dirac delta-distribution. Let us assume, in the first part of
this discussion, that the source term q(t) is an assigned function. Since η′′ = δ′0, it is natural to
seek for solutions of the form (5). Setting ψ(t) = φ(t) + q(t)η in Eq. (9) gives the following
equation for φ(t):

i
∂

∂t
φ(t) = −φ′′(t)− iq̇(t)η.

Eq. (6) follows directly from the Duhamel’s formula. Indeed by integration by parts, see
Section 2.3 (in particular Eqs. (15) and (17)), one obtains the following equation for ψ(t):

ψ(t) = eit∆ψ0 − i
t∫

0

ds q(s)ei(t−s)∆δ′0 . (9a)

This can be understood as Duhamel’s formula applied to Eq. (9).
The equation for q(t) is obtained by imposing the boundary condition φ′(0) = γq, using

Eq. (6) to compute the l.h.s. in the boundary condition. We postpone the details of the
calculation to Section 2.3. Here we note that the boundary condition turns the flow associated
to Eq. (9) into a unitary flow. In fact, one can show that:

d

dt
‖ψ(t)‖2 = 2 Im q̄(t)φ′(0, t).
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Hence, if the boundary condition is satisfied, one has
d

dt
‖ψ(t)‖ = 0.

We remark that a function ψ ∈ D(Hγ) can be written as the sum of a regular and
singular part with both functions in L2 by introducing a regularization parameter λ. More
precisely, define:

Gλ(x) := −e
−
√
λ|x|

2
√
λ

λ > 0.

The function Gλ is the solution of the distributional equation G′′λ = δ0 + λGλ. The domain
D(Hγ) can be rewritten as

D(Hγ) =
{
ψ ∈ L2(R) : ψ = φλ + qG′λ, φλ ∈ H2(R), q ∈ C, φ′λ(0) =

(
γ +

√
λ

2

)
q
}
,

and the action of Hγ can be understood by the identity:

(Hγ + λ)ψ(x) = −φ′′λ(x) + λφλ(x), x ∈ R,
see, e.g., [3]. Eq. (3) is obtained by taking λ→ 0.

We note that the charge equation (7) does not depend on λ, it is easy to see that:

f0(t) =

√
4i

π

t∫
0

ds
(eis∆ψ0)

′
(0)√

t− s
,

see Eqs. (18) and (19) below. The equation for the regular part φλ, instead, does involve the
regularization parameter, precisely

φλ(t) = eit∆φλ,0 −
t∫

0

ds (q̇(s) + λq(s))ei(t−s)∆G′λ.

We note that, even if the regularization would avoid few issues with convolutions and Fourier
transforms, which must otherwise be interpreted in distributional sense, it makes formulae more
involved and introduces an unnecessary parameter. For those reasons, we decided to avoid it.

The paper consists of one additional section in which we prove Theorem 1.

2. Proof of Theorem 1

2.1. Notation and preliminaries

In what follows, C denotes a generic positive constant whose value may change from
line to line.

We denote by ψ̂ the spatial Fourier transform of ψ:

ψ̂(k) =

∫
R

dx e−ikxψ(x) .

The time-Fourier transform of f is denoted by Ff and defined as:
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Ff(ω) =

∫
R

dt e−iωtf(t) .

With these definitions, the Fourier transform of the convolution is:

(ψ̂ ∗ φ)(k) = ψ̂(k)φ̂(k),

and similarly for the time-Fourier transform.
In the following, we denote by U(t) the free unitary group ei∆t, we recall that its explicit

expression is given by:

U(t)ψ(x) =

∫
R

dy
e
i(x−y)2

4t

√
4πit

ψ(y),

which in Fourier transform reads:

Û(t)ψ(k) = e−ik
2tψ̂(k).

Proposition 2.1. For ν = m+ σ, with m integer and 1/2 < σ ≤ 1, it results Xν ⊂ Cm(R).

Proof. In Fourier transform:

f (m)(x)− f (m)(y) =
1

2π

∫
R

dk (ik)m(eikx − eiky)f̂(k).

We note that: ∣∣∣∣∣∣∣
∫
|k|<1

dk (ik)m(eikx − eiky)f̂(k)

∣∣∣∣∣∣∣ ≤C|x− y|σ
∫
|k|<1

dk |k|m+σ|f̂(k)|

≤C|x− y|σ‖f̂‖L2(R,|k|2νdk).

(10)

Moreover: ∣∣∣∣∣∣∣
∫
|k|>1

dk (ik)m(eikx − eiky)f̂(k)

∣∣∣∣∣∣∣ ≤C
∫
|k|>1

dk |k|m|f̂(k)|

≤C

 ∫
|k|>1

dk

|k|2σ


1
2

‖f̂‖L2(R,|k|2νdk).

(11)

Then, the continuity of f (m) follows from the bounds (10) and (11), and the dominated conver-
gence theorem. �

We will make use of fractional Sobolev spaces; for this reason we recall few definitions.
For any −∞ ≤ a < b ≤ +∞ and ν ∈ (0, 1), we set:

[f ]Hν(a,b) :=

 ∫
[a,b]2

dsds′
|f(s)− f(s′)|2

|s− s′|1+2ν


1/2

,
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which is sometimes referred to as Gagliardo (semi)norm of f . The space Hν(a, b), for −∞ ≤
a < b ≤ +∞ and ν ∈ (0, 1), is the space of functions for which the norm

‖f‖Hν(a,b) = ‖f‖L2(a,b) + [f ]Hν(a,b)

is finite. To define the space Hν(a, b) for ν > 1 not integer, one sets ν = m + σ, where m is
an integer and σ ∈ (0, 1). Then Hν(a, b) is the space of functions such that f ∈ Hm(a, b) and
f (m) ∈ Hσ(a, b).

Remark 2.2. Note that, for ν ∈ (0, 1) there exists a constant Cν such that:

[f ]Hν(R) = Cν‖Ff‖L2(R,|ω|2νdω),

for any f ∈ Xν , this is a direct consequence of Plancherel’s theorem (see [27], Proposition
1.37). This identity, together with Prop. 2.1 implies that, for all ν > 1/2, and a and b finite, if
f ∈ Xν then f ∈ Hν(a, b), and, consequently, it belongs to Hµ(a, b) for all 0 ≤ µ ≤ ν. Also, if
f ∈ L2(a, b) and f ∈ Xν , then f ∈ Hν(a, b), and, consequently, in Hµ(a, b) for all 0 ≤ µ ≤ ν.

We recall that, for −∞ ≤ a < b ≤ +∞, the space L2(a, b) can be identified with
H0(a, b), and L2(R) can be identified with X0.

For the norms, we shall use the notation ‖ · ‖ = ‖ · ‖L2(R).
We denote by I the operator:

If(t) =
1√
π

t∫
0

ds
f(s)√
t− s

. (12)

We shall use the following results which establish the regularization properties of the
operator I .

Lemma 2.3. Let ν ≥ 0 and T > 0. Assume that f ∈ Xν and has support in [0, T ], then
If ∈ Xν+1/2.

Proof. The integral kernel:

A(t) =
1√
π

Θ(t)√
t
,

where Θ is the Heaviside function, is a tempered distribution and

FA(ω) =
1√
|ω|

(√
i

2
Θ(ω) +

1√
2

(Θ(−ω) + iΘ(ω))

)
.

Let f ∈ Xν . The convolution of A and f , If = A ∗ f , is a tempered distributions and
FIf = FAFf , see, e.g., [28, Th. 14.25]. Then,

‖| · |ν+1/2FIf‖ ≤ C‖| · |νFf‖.
�

We recall the following technical lemma:

Lemma 2.4. Let −∞ < a < b <∞ and let f ∈ Hν(a, b) with ν ≥ 0. Define

f̃(s) =

{
f(s) if s ∈ [a, b];

0 otherwise.

i) If 0 ≤ ν < 1/2, then f̃ ∈ Hν(R).
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ii) If 1/2 < ν < 3/2 and f(a) = f(b) = 0, then f̃ ∈ Hν(R) .

For the proof, see for example [29, Th. 11.4], see also [30, Th. III.3.2].
We shall also use the following:

Proposition 2.5. Let µ > 1/2 and 0 ≤ ν ≤ µ. If g ∈ Hµ(a, b) and f ∈ Hν(a, b) then
fg ∈ Hν(a, b).

For the proof we refer to [30].

2.2. Well-posedness of the charge equation

In this section, we study the well-posedness of the charge equation (7).
We start with the following lemma, which gives the regularity properties of the inhomo-

geneous term in Eq. (7):

Lemma 2.6. Let φ0 ∈ X2, then (U(·)φ0)′(0) ∈ X3/4.

Proof. Since φ′0 ∈ L2(R), one has that the distributional identity:

(U(t)φ0)′(x) =

∫
R

dy
e
i(x−y)2

4t

√
4πit

φ′0(y)

shows that (U(t)φ0)′ ∈ L2(R). By using the Fourier transform, one has that:

(U(t)φ0)′(0) =
1

2π

∫
R

dk e−ik
2tφ̂′0(k).

By splitting the integral in dk for k > 0 and k < 0, and by using the change of variables
k =
√
ω for k > 0 and k = −

√
ω for k < 0, it follows that:

(U(t)φ0)′ (0) =
i

4π

∞∫
0

dω√
ω
e−iωt

(
φ̂′0(
√
ω) + φ̂′0(−

√
ω)
)
.

Hence:

F ((U(·)φ0)′(0)) (ω) =
i

2
√
ω

Θ(−ω)
(
φ̂′0(
√
−ω) + φ̂′0(−

√
−ω)

)
,

where Θ denotes the Heaviside function. To prove that F ((U(·)φ0)′(0)) ∈ L2(R, |ω|
3
2dω), it is

enough to note that

‖| · |
3
4F ((U(·)φ0)′(0)) ‖ ≤ C‖| · |φ̂′0‖ = C‖| · |2φ̂0‖,

where we used the change of variables k2 = ω. �

We are now ready to prove the main result of this section.

Lemma 2.7. Let T > 0, γ ∈ H3/4(0, T ), and set γ0 = γ(0). Let ψ0 = φ0 + q0η ∈ D(Hγ0).
Then, Eq. (7) admits a unique solution q ∈ H5/4(0, T ).

Proof. We split the proof in two steps: first, we prove that there exists a unique solution
q ∈ L2(0, T ), then, by a bootstrap argument, we show that such solution belongs to H5/4(0, T ).

We start by step 1. We use several results from the monograph [31]. We set:

k(t, s) =

√
4i

π

γ(s)√
t− s
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and rewrite the equation as:

q(t) = f0(t)−
t∫

0

ds k(t, s)q(s). (13)

This is a linear nonconvolution Volterra equation to which we can apply the results in [31, Ch.
9]. We start by noticing that for any finite interval J ⊂ R+, k(t, s) is a Volterra kernel of type
L2, more precisely:

|||k|||L2(J) := sup
‖h‖L2(J)≤1

‖g‖L2(J)≤1

∫
J

∫
J

ds dt |h(t)k(t, s)g(s)| ≤ C|J |1/2‖γ‖L∞(J).

Hence, the interval [0, T ] can be divided into finitely many subintervals Ji such that
|||k|||L2(Ji) < 1 on each Ji, and, as a consequence of Cor. 9.3.14 in [31], one has that k
has a resolvent of type L2 on [0, T ]. By applying Th. 9.3.6 of [31], we conclude that Eq. (13)
has a unique solution in L2(0, T ).

We can now proceed to the second step of the proof, which consists in showing that such
a solution belongs to H5/4(0, T ). By Lemma 2.6 and Rem. 2.2, one has (U(·)φ0)′(0) ∈ Hν(0, T )
for all 0 ≤ ν ≤ 3/4. We set:

Q(t) = q(t)− q0 and F (t) =
√

4i((U(t)φ0)′(0)− γ(t)q(t)) t ∈ [0, T ].

We denote by Q̃ the function obtained by prolonging Q to zero outside [0, T ] and remark that the
claim Q̃ ∈ Xν implies Q ∈ Hµ(0, T ) for all 0 ≤ µ ≤ ν, see Rem. 2.2, therefore q ∈ Hµ(0, T ).

By the charge equation (7), the identity Q = IF holds true for a.a. t ∈ [0, T ], here I
is the operator defined in (12). Since, by Prop. 2.5, F ∈ L2(0, T ) we can define F̃ ∈ L2(R)
by extending it to zero. Then, by Lemma 2.3, Q̃ = IF̃ ∈ X1/2, hence, Q ∈ H1/4(0, T ) and
q ∈ H1/4(0, T ).

We can repeat the argument. We start with the observation that now we know that
F ∈ H1/4(0, T ) and conclude that q ∈ H3/4(0, T ). Here, we use Lemma 2.4-i) to claim that
F̃ ∈ H1/4(R) which in turn implies F̃ ∈ X1/4.

To conclude the proof, we must slightly adjust the argument above. So far, we have
proved that F ∈ H3/4(0, T ), moreover we know that F (0) = 0, because the boundary condition
φ′0(0) = γ0q0 holds true by assumption. Define F s : [0, 2T ] → C by reflection of F about
t = T . We have that F s(0) = F s(2T ) = 0. We define F̃ s : R → C by extending F s to zero
and use Lemma 2.4-ii) to claim that F̃ s ∈ H3/4(R), and, consequently, F̃ ∈ X3/4. Reapplying
Lemma 2.3, we conclude that q ∈ H5/4(0, T ). �

2.3. Proof of Theorem 1

The function φ(t) defined by Eq. (6) exists and is unique for all t ∈ [0, T ]. Next we
prove that φ(t) ∈ X2. Let us rewrite Eq. (6) as:

φ(t) = U(t)φ0 + φ̃(t),

where we set:



Time dependent delta-prime interactions in dimension one 311

φ̃(t) = −
t∫

0

ds q̇(s)U(t− s)η. (14)

One has that U(t)φ0 ∈ X2, because ‖Û(t)φ0‖L2(R,|k|4dk) = ‖φ̂0‖L2(R,|k|4dk).
We are left to prove that φ̃ ∈ X2. We recall that the Fourier transform of η is the

distribution −iPV
1

k
(where PV stands for principal value). We have that:

‖ ˆ̃φ(t)‖2
L2(R,|k4|dk) =

1

2π

∫
R

dk k2

∣∣∣∣∣∣
t∫

0

ds e−ik
2(t−s)q̇(s)

∣∣∣∣∣∣
2

=
1

2π

∞∫
0

dω ω
1
2

∣∣∣∣∣∣
t∫

0

ds eiωsq̇(s)

∣∣∣∣∣∣
2

≤ C‖q̇‖H1/4(0,T ).

(14a)

Here, the inequality follows from the same argument used in the proof of Prop. 3.3 in [23].
Next, we prove that ψ(t) = φ(t) + q(t)η ∈ L2(R). Since φ(t) ∈ C1(R), see Prop. 2.1,

and η is bounded, ψ(t) ∈ L2
loc(R). Hence, it is enough to prove that (1−χ)ψ(t) ∈ L2(R), where

χ is the characteristic function of the interval [−1, 1]. In the definition of φ(t), see Eq. (6), we
use the identity:

t∫
0

ds q̇(s)U(t− s)η = q(t)η − q0U(t)η −
t∫

0

ds q(s)
∂

∂s
U(t− s)η,

which gives:

ψ(t) = U(t)ψ0 +

t∫
0

ds q(s)
∂

∂s
U(t− s)η. (15)

Since U(t)ψ0 ∈ L2(R), we are left to prove that the second term at the r.h.s., times the function
(1− χ), is also in L2(R). We note that:

(U(t)η)(x) =

∫
R

dy
ei

(x−y)2
4t

√
4πit

η(y)

=
1

2

1√
4πit

 x∫
−∞

dy ei
y2

4t −
∞∫
x

dy ei
y2

4t

 .

(16)

From which, we get:

∂

∂t
(U(t)η)(x) = −1

2

1√
4πi

x

t3/2
ei
x2

4t = −
√
i

π

√
t

x

d

dt
ei
x2

4t .

We remark that the first equality can be understood in distributional sense as:

∂

∂t
(U(t)η) = i(U(t)η)′′ = i(U(t)η′′) = i(U(t)δ′0), (17)

from which, one deduces that Eq. (15) is equivalent to Eq. (5).



312 C. Cacciapuoti, A. Mantile, A. Posilicano

This then gives:

t∫
0

ds q(s)
∂

∂t
(U(t− s)η) (x) =

√
i

π

1

x

t∫
0

ds q(s)
√
t− s d

ds
ei

x2

4(t−s)

=

√
i

π

1

x

−q0

√
tei

x2

4t −
t∫

0

ds q̇(s)
√
t− s ei

x2

4(t−s) +
1

2

t∫
0

ds
q(s)√
t− s

ei
x2

4(t−s)

 .

We gained a factor 1/x which gives the bound:

∥∥∥∥∥∥(1− χ)

t∫
0

ds q(s)
∂

∂t
U(t− s)η

∥∥∥∥∥∥ ≤ C
(
‖q‖L∞(0,T ) + ‖q̇‖L1(0,T )

)
≤ C t ∈ [0, T ].

Next, we prove that the boundary condition φ′(0) = γ(t)q holds true for all t ∈ [0, T ]. From
Eq. (16), we obtain:

(U(t)η)′(0) =
1√
4πit

, (18)

hence

φ′(0, t) = (U(t)φ0)′(0)−
t∫

0

ds
1√

4πi(t− s)
q̇(s).

We apply the operator I , defined in (12), and use the charge equation (7) to obtain

(Iφ′(0, ·)) (t) = (I(U(·)φ0)′(0)) (t)− 1√
4i

(q(t)− q0) = (Iγq)(t),

which implies the boundary condition. Here, we used the identities:

I(π(·))−1/2(t) =
1√
π

t∫
0

ds
1√
t− s

1√
πs

= 1 and I2f(t) =

t∫
0

ds f(s). (19)

By Eq. (3), to prove the continuity of the map t 7→ Hγ(t)ψ(t) in L2(R), it is enough to
show the continuity of ‖φ′′(t)‖. As the continuity of U(t)φ0 is obvious, we just need to show
that:

lim
δ→0

∥∥∥ ˆ̃φ(t+ δ)− ˆ̃φ(t)
∥∥∥2

L2(R,|k4|dk)
= 0.

By Eqs. (14) and (14a), this is reduced to show that:

lim
δ→0

∫
R

dk k2

∣∣∣∣∣∣
t+δ∫
t

ds e−ik
2sq̇(s)

∣∣∣∣∣∣
2

= 0.

For the proof of this statement, we refer to the proof of Prop. 3.3 in [23]. �
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[2] Šeba P. Some remarks on the δ′-interaction in one dimension, Rep. Math. Phys., 1986, 24(1), P. 111–120.
[3] Albeverio S., Gesztesy F., Hoegh-Krohn R., and Holden H. Solvable Models in Quantum Mechanics, AMS,

2005. With an appendix of P. Exner.
[4] Sayapova M. R. and Yafaev D. R. The evolution operator for time-dependent potentials of zero radius,

Boundary value problems of mathematical physics, vol. 159, Part 12, Work collection, Trudy Mat. Inst.
Steklov., 1983, P. 167–174.

[5] Yafaev D. R. Scattering theory for time-dependent zero-range potentials, Annales de l’IHP Physique théorique,
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We review the main results of our recent work on singular perturbations supported on bounded hypersurfaces. Our

approach consists in using the theory of self-adjoint extensions of restrictions to build self-adjoint realizations of the

n-dimensional Laplacian with linear boundary conditions on (a relatively open part of) a compact hypersurface. This

allows one to obtain Krĕın-like resolvent formulae where the reference operator coincides with the free selfadjoint
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examples of this construction, we consider the cases of Dirichlet and Neumann boundary conditions assigned on

an unclosed hypersurface.
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1. Introduction

In a recent paper [1], the complete family of self-adjoint elliptic operators with interface
conditions assigned on a hypersurface in Rn was realized. Derived from the abstract theory
of selfadjoint extensions of restrictions developed in [2–5], our approach leads to Krĕın type
formulae for the resolvent difference between the perturbed operator and the corresponding free
selfadjoint model with domain H2(Rn). This is a relevant point for the interface perspective of
studying the scattering problem. Moreover, while some sub-families of extensions (mainly those
concerned with the δ or δ′ interface conditions) have been largely investigated by using quadratic
form or quasi-boundary triple techniques (see [6–25]), for others models presented in [1], and
in particular those concerned with local interface conditions of Dirichlet and Neumann type, a
rigorous analysis was not previously given.

The aim of this report is to provide a shortened introduction to this analysis, giving the
essential information about the construction of our models in the case of singular perturbations
of the n-dimensional Laplacian with interface conditions. In this framework, we recall the basic
results needed to construct the whole family of singular perturbations and then focus on the
explicit examples of ”global” and ”local” Dirichlet- and Neumann-type boundary conditions.
For the detailed proofs, we refer to [1].

After recalling in Section 1 the main properties of the trace maps and the layer operators
related to the surface Γ, we introduce our model in Section 2 through the symmetric operator:

∆◦ = ∆ �
{
u ∈ H2(Rn) : u|Γ = (ν · ∇)u|Γ = 0

}
, (1)

where ν denotes the exterior unit normal on Γ. The self-adjoint realizations of the Laplacian with
boundary conditions involving linear relations between lateral traces on Γ, or on a relatively open
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part Σ ⊂ Γ, are defined as selfadjoint extensions of ∆◦. The general construction provided in
[2–5] allows us to define these extensions as singular perturbations of the free Laplacian operator
defined by dom (∆) = H2(Rn). In this framework, the perturbed operators are parametrized
through couples (Π,Θ), where Π is an orthogonal projector on the Hilbert trace space H3/2(Γ)⊕
H1/2(Γ) and Θ is a self-adjoint operator in the Hilbert space given by the range of Π. In
Theorem 3.1 and Corollary 3.5, we define this family of extensions in terms (Π,Θ) and give the
corresponding Krĕın-like resolvent formulae, while their spectral properties and the conditions
for the wave operators existence and completeness are given in Theorem 3.3. The connection
between this abstract parametrization and explicit boundary (or interface) conditions is the main
issue concerned with this approach. In Section 3 we consider this point in the particular cases
of the Dirichlet and Neumann conditions on Γ and on Σ ⊂ Γ.

2. Preliminaries

Let Ω ⊂ Rn be open and suppose its boundary Γ = ∂Ω is a smooth (n− 1)-dimensional
compact manifold. In this case, Hs (Ω), s ∈ R, is defined by Hs (Ω) := {u|Ω : u ∈ Hs (Rn)},
u|Ω denoting the restriction of u to Ω and Hs(Rn) denoting the usual scale of Hilbert-Sobolev
spaces on Rn defined by Fourier transform. The Sobolev spaces of L2-functions on Γ, next
denoted with Hs (Γ), are defined by using an atlas of Γ and the Sobolev space on flat, open,
bounded, (n − 1)-dimensional domains (see e.g. [26, Chapter 1], [27, Chapter 3]); H−s (Γ)
identifies with the dual space of Hs (Γ); 〈·, ·〉−s,s denotes the H−s-Hs duality. Considering the
Riemannian structure inherited from Rn, the space Hs(Γ) identifies with dom((−∆Γ)s/2) with
respect to the scalar product:

〈φ, ϕ〉Hs(Γ) := 〈Λsφ,Λsϕ〉L2(Γ) , Λ := (−∆Γ + 1)1/2 , (2)

being ∆Γ the self-adjoint operator in L2(Γ) corresponding to the Laplace-Beltrami operator on
the complete Riemannian manifold Γ (see e.g. [26, Remark 7.6, Chapter 1]). According to
this definition, Λr is self-adjoint in Hs(Γ) with domain Hs+r(Γ) and acts as a unitary map
Λr : Hs (Γ)→ Hs−r (Γ).

For a bounded open domain Ω, we set: Ω− = Ω and Ω+ = Rn\Ω, while ν denotes the
outward normal vector on Γ = ∂Ω. The domain of the maximal Laplacian in L2(Ω±) is next
denoted by:

L2
∆ (Ω±) :=

{
u ∈ L2 (Ω) : ∆u ∈ L2 (Ω±)

}
(3)

and we define:
L2

∆ (Rn\Γ) := L2
∆ (Ω−)⊕ L2

∆ (Ω+) . (4)

We also pose:
Hs (Rn\Γ) := Hs (Ω−)⊕Hs (Ω+) . (5)

The one-sided, zero-order, trace operators γ±0 act on a smooth function u ∈ C∞
(
Ω±
)

as
γ±0 u = u|Γ, where ϕ|Γ is the restriction to Γ. These maps uniquely extend to bounded linear
operators (see e.g. [27, Theorem 3.37]):

γ±0 ∈ B(Hs (Ω±) , Hs−1/2 (Γ)) , s >
1

2
. (6)

The one-sided first-order trace operators are given by γ±1 u := ν · γ±0 (∇u); from (6) there
follows:

γ±1 ∈ B(Hs (Ω±) , Hs− 3
2 (Γ)) , s >

3

2
. (7)
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Using these maps, the two-sided bounded trace operators are defined according to:

γ0 : Hs (Rn\Γ)→ Hs− 1
2 (Γ) , γ0(u− ⊕ u+) :=

1

2
(γ+

0 u+ + γ−0 u−) , (8)

γ1 : Hs (Rn\Γ)→ Hs− 3
2 (Γ) , γ1(u− ⊕ u+) :=

1

2
(γ+

1 u+ + γ−1 u−) , (9)

while the corresponding jumps are:

[γ0] : Hs (Rn\Γ)→ Hs− 1
2 (Γ) , [γ0](u− ⊕ u+) := γ+

0 u+ − γ−0 u− , (10)

[γ1] : Hs (Rn\Γ)→ Hs− 3
2 (Γ) , [γ1](u− ⊕ u+) := γ+

1 u+ − γ−1 u− . (11)

By [26, Theorem 6.5, Section 6, Chapter 2], the maps γ±0 and γ±1 can be further extended to:

γ̂±0 ∈ B(L2
∆ (Ω±) , H−1/2 (Γ)), (12)

and
γ̂±1 ∈ B(L2

∆ (Ω±) , H−
3
2 (Γ)) , (13)

thus producing the extended jumps maps:

[γ̂0] : L2
∆ (Rn\Γ)→ H−

1
2 (Γ) , [γ̂0](u− ⊕ u+) := γ̂+

0 u+ − γ̂−0 u− , (14)

[γ̂1] : L2
∆ (Rn\Γ)→ H−

3
2 (Γ) , [γ̂1](u− ⊕ u+) := γ̂+

1 u+ − γ̂−1 u− . (15)

In what follows, the n-dimensional free Laplacian is defined by dom(∆) = H2 (Rn). This is
a selfadjoint and negatively-defined operator with: σ (∆) = σac (∆) = (−∞, 0], and for all
z ∈ C\R− it follows that:

(−∆ + z)−1 ∈ B
(
Hs (Rn) , Hs+2 (Rn)

)
(16)

Given an open and bounded smooth domain Ω, the single and double-layer operators related to
(−∆ + z)−1 and to the surface Γ = ∂Ω are defined for any z ∈ C\R− by:

〈SLzφ, u〉L2(Rn) := 〈φ, γ0 (−∆ + z̄)−1 u〉−3/2,3/2 , (17)

〈DLzϕ, u〉L2(Rn) := 〈ϕ, γ1 (−∆ + z̄)−1 u〉−1/2,1/2 . (18)

Due to the mapping properties (6) – (7) and (16), these relation define bounded maps on
H−3/2 (Γ) and H−1/2 (Γ), provided that z ∈ C\R−; we have:

SLz ∈ B
(
H−3/2 (Γ) , L2 (Rn)

)
, DLz ∈ B

(
H−1/2 (Γ) , L2 (Rn)

)
. (19)

The integral kernel of (−∆ + z)−1, z ∈ C\R−, is given by:

Kz (x− y) =
1

2π

( √
z

2π ‖x− y‖

)n/2−1

Kn/2−1

(√
z ‖x− y‖

)
, Re

√
z > 0 ,

where Kα denotes the modified Bessel functions of second kind of order α. This is a smooth
function for x 6= y and the relations (17) and (18) give:

SLzφ(x) =

∫
Γ

Kz (x− y) φ(y) dσΓ(y) , x /∈ Γ and φ ∈ L2(Γ) , (20)

and

DLzϕ(x) =

∫
Γ

ν(y) · ∇Kz (x− y) ϕ(y) dσΓ(y) , x /∈ Γ and ϕ ∈ L2(Γ) , (21)

where σΓ denotes the surface measure. In particular, one has (see [27, eqs. (6.18) and (6.19)]):

∀x /∈ Γ , ∆SLzφ(x) = z SLzφ(x) , ∆DLzϕ(x) = z DLzϕ(x) , (22)
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from which, we obtain

SLz ∈ B
(
H−3/2 (Γ) , L2

∆ (Rn\Γ)
)
, DLz ∈ B

(
H−1/2 (Rn\Γ) , L2

∆ (Rn\Γ)
)

; (23)

in particular, the representation:

L2
∆ (Rn\Γ) =

{
u = u0 + SLzφ+DLzϕ , u0 ∈ H2 (Rn) , φ⊕ ϕ ∈ H−3/2 (Γ)⊕H−1/2 (Γ)

}
,

(24)
holds for any z ∈ C\R− (see [1, Lemma 4.2]). In the following, we choose z = 1 and set

SL := SL1 , DL := DL1 . (25)

3. Singular perturbations supported on hypersurfaces.

Let Ω ⊂ Rn, be open and bounded with smooth boundary Γ and denote:

γ : H2 (Rn)→ H3/2(Γ)⊕H1/2(Γ) , γu := γ0u⊕ γ1u . (26)

The singular perturbations of the free Laplacian supported on Γ are next defined as the selfad-
joint extensions of the closed symmetric operator:

∆◦ := ∆ � ker (γ) , (27)

where

ker (γ) = H2
0 (Ω+)⊕H2

0 (Ω−) , H2
0 (Ω±) :=

{
u± ∈ H2 (Ω±) : γ±0 u± = γ±1 u± = 0

}
. (28)

The corresponding adjoint coincides with the maximal Laplacian in Rn\Γ, i.e.

(∆◦)∗ = ∆ � L2
∆ (Ω+)⊕ L2

∆ (Ω−) . (29)

Using the alternative representation given in (24), we have:

(∆◦)∗u = ∆u0 + z (SLzφ+DLzϕ) . (30)

Moreover, (∆◦)∗ and the distributional Laplacian are related by the identity (see e.g. in [28,
Theorem 3.1]):

(∆◦)∗u = ∆u− [γ̂1]u δΓ − [γ̂0]u ∂νδΓ . (31)
Here, for f ∈ H−s (Γ), fδΓ and f∂νδΓ are the distributions supported on Γ defined by:

(f δΓ, χ) =
〈
f̄ , γ0χ

〉
−s,s , and (f ∂νδΓ, χ) = −

〈
f̄ , γ1χ

〉
−s,s . (32)

In particular, taking f = 1, for any χ ∈ C∞0 (Ω) one has:

(δΓ, χ) =

∫
Γ

χ (x) dσΓ (x) , (33)

and

(∂νδΓ, χ) = −
∫

Γ

∂νχ (x) dσΓ (x) . (34)

Let us recall that γ belongs to B
(
H2 (Rn) , H3/2(Γ)⊕H1/2(Γ)

)
, is surjective and has a kernel

dense in L2 (Rn) [1, Lemma 4.1]. Hence, the approach developed in [2–5] applies to our
framework and allows us to construct all self-adjoint extensions of ∆◦. For generic elliptic
selfadjoint operators with smooth coefficients, this strategy has been implemented in [1] to
which we refer for the detailed proofs. The auxiliary operators Gz are next defined by the
duality:

〈Gzξ, u〉L2(Rn) =
〈
ξ, γ (−∆ + z)−1 u

〉
Γ
, ξ ∈ H−3/2(Γ)⊕H−1/2(Γ) , u ∈ L2 (Rn) . (35)

for all z ∈ C\R−. From (17) – (18) it easily follows that:

Gz ∈ B
(
H−3/2 (Γ)⊕H−1/2 (Γ) , L2 (Rn)

)
, Gz (φ⊕ ϕ) = SLzφ+DLzϕ . (36)
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In what follows, we set:

G := G1 , G (φ⊕ ϕ) = SLφ+DLϕ . (37)

With this notation, the adjoint (∆◦)∗ is rephrased as:

dom ((∆◦)∗) =
{
u = u0 +G (φ⊕ ϕ) , u0 ∈ H2 (Rn) , φ⊕ ϕ ∈ H−3/2 (Γ)⊕H−1/2 (Γ)

}
,
(38)

(∆0)∗ = ∆u0 +G (φ⊕ ϕ) . (39)

We introduce the map: Mz = γ (G−Gz) whose action on H−3/2 (Γ)⊕H−1/2 (Γ) is explicitly
given by:

Mz :=

(
γ0 (SL− SLz) γ0 (DL−DLz)
γ1 (SL− SLz) γ1 (DL−DLz)

)
. (40)

From [1, eq. (2.6)], it results that:

Mz ∈ B
(
H−3/2 (Γ)⊕H−1/2 (Γ) , H3/2 (Γ)⊕H1/2 (Γ)

)
. (41)

In what follows,
Π : H3/2 (Γ)⊕H1/2 (Γ)→ H3/2 (Γ)⊕H1/2 (Γ) , (42)

denotes an orthogonal projector on the Hilbert space H3/2 (Γ)⊕H1/2 (Γ),

Π′ : H−3/2 (Γ)⊕H−1/2 (Γ)→ H−3/2 (Γ)⊕H−1/2 (Γ) , (43)

is the corresponding dual projector and

Θ : dom (Θ) ⊆ ran (Π)′ → ran (Π) , (44)

is selfadjoint in the sense of the duality, i.e.: Θ = Θ′. In this framework, the selfadjoint
extensions of ∆◦ are parametrized by the couples (Π,Θ). In particular, adapting [1, Theorem 2.1
and Lemma 4.9] to the present framework, there follows:

Theorem 3.1. Let Π : H3/2 (Γ)⊕H1/2 (Γ)→ H3/2 (Γ)⊕H1/2 (Γ) be an orthogonal projector
and Θ : dom (Θ) ⊆ ran (Π)′ → ran (Π) selfadjoint. Any self-adjoint extension of ∆0 is of the
kind ∆Π,Θ,

∆Π,Θ := (45)

(∆◦)∗ �
{
u = u0 + SLφ+DLϕ , u0 ∈ H2 (Rn) , φ⊕ ϕ ∈ dom (Θ) : Πγu0 = Θ (φ⊕ ϕ)

}
.

The set:
ZΠ,Θ := {z ∈ C\R− : Θ + ΠMzΠ

′ has a bounded inverse}, (46)

is not void; in particular, C\R ⊆ ZΠ,Θ ⊆ res(∆Π,Θ) and for any z ∈ ZΠ,Θ the resolvent of
∆Π,Θ is given by the Krĕin type formula:

(−∆Π,Θ + z)−1 u = (−∆ + z)−1 u+GzΠ
′ (Θ + ΠMzΠ

′)
−1

Πγ (−∆ + z)−1 u , (47)

where Gz and Mz are defined in (36) and (40) respectively.

Remark 3.2. Let us notice that the Π′ appearing in (47) act as the inclusion map Π′ : ran (Π)′ →
H−3/2(Γ)⊕H−1/2(Γ). This means that one does not need to know Π′ explicitly: it suffices to
know the subspace ran (Π′) = ran (Π)′.

The next result gives information on the spectrum and scattering of ∆Π,Θ. For the proof
of such results, we refer to [1, Lemma 4.9, Corollary 4.12 and Remark 4.14]. Let us remark that
hypothesis (49) below typically holds in the case of global boundary conditions, i.e. assigned on
whole boundary Γ, while hypothesis (50) typically holds in the case of local ones, i.e. assigned
on an open part Σ ⊂ Γ.
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Theorem 3.3. 1) Suppose:

dom(Θ) ⊆ Hs1(Γ)⊕Hs2(Γ) , s1 > −
3

2
, s2 > −

1

2
. (48)

Then,
σess(∆Π,Θ) = (−∞, 0] .

2) Suppose either:
dom(Θ) ⊆ H

1
2 (Γ)⊕H

3
2 (Γ) , (49)

or
dom (fΘ̃) ⊆ H5/2(Γ)⊕H

3
2 (Γ) , (50)

holds, where fΘ̃ is sesquilinear form associated to the self-adjoint operator in ran(Π) defined
by Θ̃ := Θ(Λ3 ⊕ Λ). Then:

σac(∆Π,Θ) = (−∞, 0] , (51)
and the wave operators:

W± := s- lim
t→±∞

e−it∆Π,Θeit∆ , W± := s- lim
t→±∞

e−it∆eit∆Π,ΘPac

exist and are complete, i.e. the limits exists everywhere w.r.t. strong convergence, ran(W±) =
L2(Rn)ac, ran(W±) = L2(Rn) and W ∗

± = W±, where L2(Rn)ac denotes the absolutely con-
tinuous subspace of L2(Rn) with respect to ∆Π,Θ and Pac is the corresponding orthogonal
projector.

Remark 3.4. Let us notice that the apparent discrepancy between the indices in the two con-
ditions (49) and (50) is due to the fact that the first one applies to operators acting between
the dual pair (ran(Π)′, ran(Π)), whereas the second one regards sesquilinear forms in the space
ran(Π). When written in terms of Θ̃, condition (49) reads as dom(Θ̃) ⊆ H

7
2 (Γ)⊕H 5

2 (Γ).

Under hypothesis (49), it is possible to introduce an alternative description of ∆Π,Θ

(see [1, Corollary 4.8]):

Corollary 3.5. Let ∆Π,Θ be defined according to Theorem 3.1 with Θ fulfilling (49). Define

BΘ := Θ + ΠγGΠ′ : dom(Θ) ⊆ ran(Π′)→ ran(Π) . (52)

Then:
dom(∆Π,Θ) = {u ∈ H2(Rn\Γ) : [γ]u ∈ dom(Θ) , Πγu = BΘ[γ]u} , (53)

where [γ]u := (−[γ1]u)⊕ ([γ0]u), and

(−∆Π,Θ + z)−1 − (−∆ + z)−1 = GzΠ
′(BΘ − ΠγGzΠ

′)−1Πγ(−∆ + z)−1 , z ∈ ZΠ,Θ . (54)

4. Dirichlet and Neumann boundary conditions on Σ ⊆ Γ

In this section, we apply our results to self-adjoint adjoint realizations of the Laplacian
with Dirichlet and Neumann type boundary conditions on Σ ⊆ Γ. For proofs and more details
on such realizations, we refer to [1, Sections 5 – 6]. In particular, by the results given there,
hypothesis (49) or (50) hold for the models considered here, namely: (49) is satisfied in the
case of ”global” boundary conditions (i.e. assigned on the whole Γ), while (50) holds in the
case of ”local” boundary conditions (i.e. assigned on Σ ⊂ Γ).

In the following, given X ⊂ Γ closed, we use the definition:

Hs
X(Γ) := {φ ∈ Hs(Γ) : supp (φ) ⊆ X} . (55)

Given Σ ⊂ Γ relatively open with a Lipschitz boundary, we denote by ΠΣ the orthogonal
projector in the Hilbert space Hs(Γ), s > 0, such that ran(ΠΣ) = Hs

Σc(Γ)⊥. One has ran (Π′Σ) =
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H−s
Σ

(Γ). Moreover, we use the identifications Hs
Σc(Γ)⊥ ' Hs(Σ) and H−s

Σ
(Γ) ' Hs(Σ)′. In

particular, by the former, the orthogonal projection ΠΣ can be identified with the restriction map
RΣ : Hs(Γ)→ Hs(Σ), RΣφ := φ|Σ.

4.1. Dirichlet boundary conditions

The self-adjoint extension ∆D corresponding to Dirichlet boundary conditions on the
whole Γ is given by the direct sum ∆D = ∆D

Ω+
⊕∆D

Ω−
, where

∆D
Ω± := ∆ � {u ∈ H2(Ω±) : γ±0 u = 0} . (56)

Since:
dom

(
∆D

Ω+

)
⊕ dom

(
∆D

Ω−

)
= {u ∈ H2(Rn\Γ) : [γ0]u = 0 , γ0u = 0} , (57)

with the parametrization introduced in Corollary 3.5, this corresponds to the choice Π(φ⊕ϕ) :=
φ⊕ 0, and BΘ = 0. Hence, from (31) we get:

∆Du = ∆u− [γ1]u δΓ .

Moreover, using the identity: (γ0SLz)
−1 = P−z − P+

z , where P±z denote the Dirichlet-to-
Neumann operators for Ω± respectively (see e.g. [1, equation (5.4)]), one has, for any z ∈ C\R−,

(−∆D + z)−1 = (−∆ + z)−1 + SLz(P
+
z − P−z )γ0 (−∆ + z)−1 . (58)

Now, we turn to Dirichlet boundary conditions supported on a relatively open part Σ ⊂ Γ
with Lipschitz boundary. We denote by ∆D,Σ the self-adjoint extension corresponding to the
orthogonal projector defined by Π(φ ⊕ ϕ) := (ΠΣφ) ⊕ 0 ≡ (φ|Σ) ⊕ 0 and to the self-adjoint
operator Θ(φ⊕ ϕ) := (−ΘD,Σφ)⊕ 0:

ΘD,Σ : dom(ΘD,Σ) ⊆ H
−3/2

Σ
(Γ)→ H3/2(Σ) , ΘD,Σφ := (γ0SLφ)|Σ , (59)

dom(ΘD,Σ) := {φ ∈ H−1/2

Σ
(Γ) : (γ0SLφ)|Σ ∈ H3/2(Σ)} . (60)

By Theorem 3.1 and (31), one has:

∆D,Σu = ∆u− [γ̂1]u δΣ , (61)

dom(∆D,Σ) = {u ∈ H1(Rn) ∩ L2
∆(Rn\Γ) : [γ̂1]u ∈ dom(ΘD,Σ) , (γ0u)|Σ = 0} , (62)

⊆ {u ∈ H1(Rn) ∩ L2
∆(Rn\Γ) : (γ−0 u)|Σ = (γ+

0 u)|Σ = 0 , ([γ̂1]u)|Σc
= 0} (63)

and
(−∆D,Σ + z)−1 = (−∆ + z)−1 − SLzΠ′Σ (RΣγ0SLzΠ

′
Σ)
−1
RΣγ0 (−∆ + z)−1 . (64)

4.2. Neumann boundary conditions

Let us consider the self-adjoint extension corresponding to Neumann boundary condi-
tions on the whole Γ; this is given by the direct sum ∆N = ∆N

Ω+
⊕∆N

Ω−
, where:

∆N
Ω± := ∆ � {u ∈ H2(Ω±) : γ±1 u = 0} . (65)

Since:
dom

(
∆N

Ω+

)
⊕ dom

(
∆N

Ω−

)
= {u ∈ H2(Rn\Γ) : [γ1]u = γ1u = 0} , (66)

with the parametrization introduced in Corollary 3.5, this corresponds to the choice Π(φ⊕ϕ) :=
0⊕ ϕ, and BΘ = 0. From (31), it follows that:

∆Nu = ∆u− [γ0]u ν ·∇δΓ ,

and, denoting with Q±z the Neumann-to-Dirichlet operators for Ω± respectively, the relation
(γ1DLz)

−1 = Q+
z −Q−z , (see e.g. [1, equation (5.7)]) yields, for z ∈ C\R−,

(−∆N + z)−1 = (−∆ + z)−1 +DLz(Q
+
z −Q−z )γ1 (−∆ + z)−1 . (67)
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Next, we turn to Neumann boundary conditions supported on a relatively open part Σ ⊂ Γ
with Lipschitz boundary. We denote by ∆N,Σ the self-adjoint extension corresponding to the
orthogonal projector defined by Π(φ ⊕ ϕ) := 0 ⊕ (ΠΣϕ) ≡ 0 ⊕ (ϕ|Σ) and to the self-adjoint
operator Θ(φ⊕ ϕ) := 0⊕ (−ΘN,Σϕ):

ΘN,Σ : dom(ΘN,Σ) ⊆ H
−1/2

Σ
(Γ)→ H1/2(Σ) , ΘN,Σϕ = (γ̂1DLϕ)|Σ , (68)

dom(ΘN,Σ) := {ϕ ∈ H1/2

Σ
(Γ) : (γ̂1DLϕ)|Σ ∈ H1/2(Σ)} . (69)

By Theorem 3.1 and (31), we have:

∆N,Σu = ∆u− [γ̂0]u ν ·∇δΣ , (70)

dom(∆N,Σ) = {u ∈ H1(Rn\Σ) ∩ L2
∆(Rn\Γ) : [γ̂0]u ∈ dom(ΘN,Σ) , [γ̂1]u = 0 , (γ̂1u)|Σ = 0}

(71)
⊆ {u ∈ H1(Rn\Σ) ∩ L2

∆(Rn\Γ) : (γ̂−1 u)|Σ = (γ̂+
1 u)|Σ = 0 , ([γ̂1]u)|Σc

= 0} (72)

and

(−∆N,Σ + z)−1 = (−∆ + z)−1 −DLzΠ′Σ (RΣγ̂1DLzΠ
′
Σ)
−1
RΣγ1 (−∆ + z)−1 . (73)
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1. Introduction

Micro- and nanoflows are new fields of nanotechnology. Flow through nanostructures is
known to have many interesting unusual peculiarities [1]. Particularly, one observes a phenom-
enon analogous to superfluidity [2], the dependence of viscosity on the nanotube’s diameter [3]
and other such effects. The theory of nanoflow is not well-developed. There are only a
few works suggesting theoretical explanations for these phenomena (see, e.g., [4–6]). It has
been shown that hydrodynamic equations should be modified for nanoflows [7], but the Stokes
approximation is appropriate due to the smallness of the Reynolds number [8].

The most interesting question is about the eddy structure for nanoflow. The information
about it can be used for several nanophysical and nanochemical applications. Particularly, it was
shown experimentally that there is a separation of a fluid’s components in nanochannels [9].
Among other reasons, it is related with the existence of eddies. One observes component
separation within an eddy due to differences in the components’ densities. As a result, this
property opens the way for the creation of a chemical nanoreactor. Namely, due to component
separation, the reagents needed for some chemical reaction are collected within some local
domain inside the eddy. Correspondingly, one has strong localization of the chemical reaction
in this domain only. We have the opportunity to use this phenomenon, only if we can predict
the eddy structure for different system parameters. Particularly, if the flow is induced by the
boundary condition, we require information about the dependence of the eddy structure on the
boundary conditions.

One can mention that similar processes take place in non-autonomous phases [10]. It is
interesting to note that the analogous mathematical problem also present in geophysics [11].

Stokes flows in various domains were studied by analytical methods in many papers.
There are a number of works describing the flow over a rectangular cavity [12–18]. The
solutions for the Stokes equations for the annular cavities were investigated in [19–25]. Stokes
flow in regions partially bounded by segments of ellipses was considered in [26, 27]. Corner
eddies in the Stokes flow problems were studied in [28–30].

In the present paper, we describe the Stokes flow in a horseshoe domain formed by
two semi-ellipses and two segments (Fig. 1). The flow is induced by inhomogeneous boundary
conditions. We investigate the eddy structure for different boundary conditions. Although the
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investigation was inspired by the nanoflows problem, the result concerns the classical Stokes
flow problem.

2. Problem formulation and solution

Let us consider Stokes flow in a cavity bounded by two confocal semi-ellipses, S1

and S2 and two line segments, AB and CD (Fig. 1). Flow in the cavity is induced by the
velocities Vtop and Vbot at S1 and S2 respectively. On segments AB and CD, we assume
free-slip conditions.

FIG. 1. The domain in the Cartesian coordinates. (−d, 0), (d, 0) are the ellipse foci

In the 2D case, the Stokes equations can be reduced to the biharmonic equation for the
stream function Ψ:

∆2Ψ = 0. (1)

We make the transformation of the cavity to the elliptic coordinates system:

x = d cos(ξ2) cosh(ξ1), y = d sin(ξ2) sinh(ξ1).

The Laplace operator takes the form:

∆ =
1

d2
(
cosh2(ξ1)− cos2(ξ2)

) ( ∂2

∂ξ21
+

∂2

∂ξ22

)
.

Our domain transforms to a rectangle on Fig. 2. Semi-ellipses S1, S2 in elliptic coordinate
system will convert to segments ξ1 = ξ01, ξ1 = ξ02, π ≤ ξ2 ≤ 2π.

FIG. 2. The domain in elliptic coordinates
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Let us consider the following chain of equations:

∆Ψ = Ψ1, (2)

∆Ψ1 = 0. (3)

The boundary conditions for stream function are:

Ψ(ξ1, 0) = 0, Ψ(ξ1, π) = 0, ξ01 ≤ ξ1 ≤ ξ02; (4)

Ψ(ξ01, ξ2) = 0, Ψ(ξ02, ξ2) = 0, π ≤ ξ2 ≤ 2π; (5)

∂2Ψ

∂ξ22
|ξ2=π = 0,

∂2Ψ

∂ξ22
|ξ2=2π = 0, ξ01 ≤ ξ1 ≤ ξ02; (6)

1

h

∂Ψ

∂ξ1
(ξ01, ξ2) = VS1(ξ2),

1

h

∂Ψ

∂ξ1
(ξ02, ξ2) = VS2(ξ2), π ≤ ξ2 ≤ 2π. (7)

Lame coefficients are: hξ1 = hξ2 = h = d

√
cosh2(ξ1)− cos2(ξ2).

The function Ψ1(ξ1, ξ2) in (3) can be found by standard separation of variables (for
calculations we take m terms):

Ψ1 =
m∑
k=1

(c1ke
kξ1 + c2ke

−kξ1) sin(kξ2). (8)

We derive a solution of Eq. (2) in the form of the Fourier series:

Ψ(ξ1, ξ2) =
n∑
k=1

Ψ1k(ξ1) sin(kξ2), π ≤ ξ2 ≤ 2π (9)

Ψ11(ξ1) = a31e
ξ1 + a41e

−ξ1 +
1

8
(a11 + a21)ξ1e

ξ1 − 1

8
(a11 + a21)ξ1e

−ξ1

+
1

32
(a11 − a13)e3ξ1 +

1

32
(a21 − a23)e−3ξ1

Ψ1k(ξ1) = a3ke
kξ1+a4ke

−kξ1+
1

16(1− k)
(a1,k−a1,k−2)e

(k−2)ξ1+
1

16(1 + k)
(a1,k−a1,k+2)e

(k+2)ξ1

+
1

16(1− k)
(a2,k − a2,k−2)e

−(k−2)ξ1 +
1

16(1 + k)
(a2,k − a2,k+2)e

−(k+2)ξ1 , k ≥ 2.

Formula (9) is a general solution of equation (1). Each function Ψ1k(ξ1) depends on the
coefficients from sets a1, a2, a3, a4. Here, a1 = a11...a1(n−2), a2 = a21...a2(n−2), a3 = a31...a3n,
a4 = a41...a4n. We then need to find coefficients a1, a2, a3, a4 to satisfy the boundary conditions
for the stream function. Conditions (4),(6) are satisfied for arbitrary values of the coefficients
a1, a2, a3, a4.

We now denote Ψ1k(a1, a2, a3, a4) by Ψ1k(ξ1). Condition (5) leads to the algebraic
relations between coefficients:

Ψ1k(a1, a2, a3, a4)|ξ1=ξ01 = 0,

Ψ1k(a1, a2, a3, a4)|ξ1=ξ02 = 0, k = 1...n.
(10)

The first condition in (7) takes the form:
n∑
k=1

∂

∂ξ1
Ψ1k sin(kξ2)|ξ1=ξ01 = Vtop(ξ2)d

√
cosh2(ξ01)− cos2(ξ2).
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Let us consider the function in the right hand side as a Fourier series:
n∑
k=1

∂

∂ξ1
Ψ1k sin(kξ2)|ξ1=ξ01 =

n∑
k=1

Ck1 sin(kξ2), (11)

where

Ck1 = e−kξ01
−1

kπ
d

π∫
0

Vtop(ξ2)

√
cosh2(ξ01)− cos2(ξ2) sin(kξ2)dξ2.

The coefficients Ck1 can easily be found numerically. The means of calculating Ck2 for the
second condition in (7) is analogous. Thus, condition (7) can be represented as an algebraic
relation between coefficients:

∂

∂ξ1
Ψ1k(a1k, a2k, a3k, a4k)|ξ1=ξ01 = Ck1, k = 1 . . . n; (12)

∂

∂ξ1
Ψ1k(a1k, a2k, a3k, a4k)|ξ1=ξ02 = Ck2, k = 1 . . . n. (13)

As a result, coefficients a1, a2, a3, a4 are the solutions for a system of linear equations. This
system includes the sets of equations (10) and some equations from the sets (12), (13).

3. Discussion

The expression for stream function (9) has been completely defined above. If we fix
ellipse half axes and vary the velocity of the moving part of the boundary, we can obtain
different pictures of the flow. The following figures shows fluid streamlines for different
velocity functions at S1 and S2.

For all the examples described below, the ellipse half axes are a = 0.4; b = 0.12 for S1

and a = 0.86; b = 0.76 for S2.

FIG. 3. Velocities on S1 and S2 have opposite directions. Functions Vtop(ξ2) and
Vbot(ξ2) do not change sign. We have no separation points at the boundary. The
whole domain is a single vortex region
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FIG. 4. Functions VS1(ξ2) and VS2(ξ2) do not change sign. We have no separation
points at S1 and S2. Velocities on S1 and S2 are in the same direction. We obtain
separation points at segments AB and CD. The domain is divided into two
subdomains. On the centerline (x = 0), we obtain two stagnation points (at these
points the fluid is totally stationary), we compare that with [20]

FIG. 5. Function VS1(ξ2) changes its sign. We obtain two separation points at
S1. Function VS2(ξ2) doesn’t change its sign. We have no separation points at
S2. The velocities at the corners of S1 and S2 are in the same direction. We
obtain a single separation point for each segment, AB and CD
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4. Numerical analysis

We construct the solution of Eq.(1) by a finite-difference method. The discrete expres-
sion for the biharmonic equation, using forward finite difference method, has the form:

20Ψ0 − 8(Ψ1 + Ψ2 + Ψ3 + Ψ4) + Ψ5 + Ψ7+

+Ψ9 + Ψ11 + 2(Ψ6 + Ψ8 + Ψ10 + Ψ12) = 0.

The stencil for the finite difference scheme is shown in Fig. 6. The node with number 0
corresponds to a stream function node for which the biharmonic equation is formulated.

FIG. 6. Stencil nodes numbering

We calculate the relative errors with L1 norm and estimate the quality of numerical
solution. The dependence of the relative error E via the grid step d for Fig. 4 is shown in
Fig. 7. The positive slope confirms the convergence of the algorithm.

FIG. 7. Error norm via the grid resolution (logarithmic scale)
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5. Conclusion

We obtained exact solutions for the biharmonic equation for the stream function of the
Stokes flow. We fixed the geometrical parameters of the domain and varied the boundary
conditions. Doing so allowed us to change the flow structure drastically. This could open up
opportunities for controlling flow structure by external actions.
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1. Introduction

The problem of electro-magnetic field’s influence on an electron’s spectral and transport
properties has attracted great interest from physicists due to its importance both from funda-
mental and engineering viewpoints (see, e.g., [1] and references therein). It is important to find
solvable models to describe this phenomenon. We present a simple model in the framework of
extension theory of symmetric operators. The electro-magnetic field can be described classically
or it can be quantized. Using a classical description, such a model was proposed in in [2]. The
case of quantized electro-magnetic field is more complicated. As an example of this type of
model, we can mention [3], [4]. In the present paper, we suggest a model of point-like inter-
action between a relativistic fermion (the Dirac operator) and bosons (infinite matrix operator
in the Fock space). We use the boundary triplet approach to describe extensions of symmetric
operators (see, e.g., [8–13,15]).

In the following, we consider a particular example of point interaction for a quantum
system {D, D0} with a quantum reservoir {T, T}, where D0 denotes the self-adjoint Dirac
operator defined in the Hilbert space D = L2(∆,C2), where ∆ = (a; b), and T is the so-called
boson operator defined in the Hilbert space T = l2(N0). Before introducing the operators, let us
slightly specify the approach.

At first, we consider a system consisting of a quantum system {D, D0} and a quantum
reservoir {T, T}. This system’s composed Hamiltonian is given by the self-adjoint operator:

L0 := D0 ⊗ IT + ID ⊗ T,

which acts in L := D ⊗ T. In order to describe the interaction, we restrict the operator D0

to a densely defined closed symmetric operator D and consider the densely defined symmetric
operator:

L := D ⊗ IT + ID ⊗ T, (1.1)
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with dom (L) = dom (D)⊗ dom (T ), where:

(Df)(x) := −ic d
dx
⊗ σ1f(x) +

c2

2
⊗ σ3f(x), x ∈ ∆, (1.2)

f ∈ dom (D) := W 1,2
0 (∆,C2) := {f ∈ W 1,2(∆,C2) : f(a) = f(b) = 0}.

Here,

σ1 :=

(
0 1
1 0

)
and σ3 :=

(
1 0
0 −1

)
.

T denotes a boson operator in the Hilbert space T = l2(N0) such that:

T ~ξ = T{ξk}k∈N0 = {kξk}k∈N0 ,

~ξ = {ξk}k∈N0 ∈ dom (T ) := {{ξk}k∈N0 ∈ l2(N0) : {kξk}k∈N0 ∈ l2(N0)}.
(1.3)

To construct self-adjoint extensions we use the boundary triplet approach. Notice that there
are extensions which do not correspond to any interaction between both subsystems. From the
physical point of view it is very important to obtain those extensions which realistically describe
point interactions.

2. Preliminaries

2.1. Linear relations

A linear relation Θ in H is a closed linear subspace of H ⊕ H. The set of all linear
relations in H is denoted by C̃(H). We also denote by C(H) the set of all closed linear (not
necessarily densely defined) operators in H. Identifying each operator T ∈ C(H) with its graph
gr (T ), we regard C(H) as a subset of C̃(H).

The role of the set C̃(H) in extension theory becomes apparent from Proposition 2.3.
However, it’s role in the operator theory is substantially motivated by the following circum-
stances: in contrast to C(H), the set C̃(H) is closed with respect to taking inverse and adjoint
relations Θ−1 and Θ∗, respectively. The latter is given by: Θ−1 = {{g, f} : {f, g} ∈ Θ} and

Θ∗ =

{(
k
k′

)
: (h′, k) = (h, k′) for all

(
h
h′

)
∈ Θ

}
.

A linear relation Θ is called symmetric if Θ ⊂ Θ∗ and self-adjoint if Θ = Θ∗.

2.2. Boundary triplets and proper extensions

Let us briefly recall some basic facts regarding boundary triplets. Let A be a densely
defined closed symmetric operator with equal deficiency indices n±(A) := dim(N±i), Nz :=
ker (A∗ − z), z ∈ C±, acting on some separable Hilbert space H.

Definition 2.1.
(i) A closed extension Ã of A is called proper if dom (A) ⊂ dom (Ã) ⊂ dom (A∗).
(ii) Two proper extensions Ã′, Ã are called disjoint if dom (Ã′) ∩ dom (Ã) = dom (A) and
transversal if in addition dom (Ã′) + dom (Ã) = dom (A∗).

We denote by ExtA the set of all proper extensions of A completed by the non-proper
extensions A and A∗. For instance, any self-adjoint or maximally dissipative (accumulative)
extension is proper.
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Definition 2.2 ( [11]). A triplet Π = {H,Γ0,Γ1}, where H is an auxiliary Hilbert space and
Γ0,Γ1 : dom (A∗)→ H are linear mappings, is called a boundary triplet for A∗ if the “abstract
Green’s identity”,

(A∗f, g)− (f, A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom (S∗), (2.1)

is satisfied and the mapping Γ := (Γ0,Γ1)> : dom (A∗) → H⊕H is surjective, i.e. ran (Γ) =
H⊕H. ♦

A boundary triplet Π = {H,Γ0,Γ1} for A∗ always exists whenever n+(A) = n−(A).
Note also that n±(A) = dim(H) and ker (Γ0) ∩ ker (Γ1) = dom (A).

With any boundary triplet Π one associates two canonical self-adjoint extensions Aj :=
S∗ � ker (Γj), j ∈ {0, 1}. Conversely, for any self-adjoint extension A0 = S∗0 ∈ ExtS there
exists a (non-unique) boundary triplet Π = {H,Γ0,Γ1} for A∗ such that A0 := A∗ � ker (Γ0).

Using the concept of boundary triplets, one can parametrize all proper extensions of A
in the following way.

Proposition 2.3 ( [9,13]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the mapping:

ExtA 3 Ã→ Γdom (Ã) = {(Γ0f,Γ1f)> : f ∈ dom (Ã)} =: Θ ∈ C̃(H), (2.2)

establishes a bijective correspondence between the sets ExtA and C̃(H). We write Ã = AΘ if
Ã corresponds to Θ by (2.2). Moreover, the following holds:
(i) A∗Θ = AΘ∗ , in particular, A∗Θ = AΘ if and only if Θ∗ = Θ.
(ii) AΘ is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).
(iii) The extensions AΘ and A0 are disjoint (transversal) if and only if there is a closed
(bounded) operator B such that Θ = gr (B). In this case (2.2) takes the form:

AΘ := Agr (B) = A∗ � ker (Γ1 −BΓ0). (2.3)

In particular, Aj := A∗ � ker (Γj) = AΘj
, j ∈ {0, 1}, where Θ0 :=

(
{0}
H

)
and

Θ1 :=

(
H
{0}

)
= gr (O) where O denotes the zero operator in H. Note also that C̃(H) contains

the trivial linear relations {0} × {0} and H ×H corresponding to A and A∗, respectively, for
any boundary triplet Π.

2.3. Gamma field and Weyl function

It is well known that the Weyl function is an important tool in the direct and inverse
spectral theory of Sturm-Liouville operators. In [8, 9], the concept of Weyl function was
generalized to the case of an arbitrary symmetric operator A with n+(A) = n−(A) ≤ ∞.
Following [9] we briefly recall basic facts on Weyl functions and Gamma fields associated with
a boundary triplet Π.

Definition 2.4 ( [8, 9]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ and A0 = A∗ �
ker (Γ0). The operator valued functions γ(·) : ρ(A0) → [H,H] and M(·) : ρ(A0) → [H]
defined by the following:

γ(z) :=
(
Γ0 � Nz

)−1
, Nz = ker (A∗−z) and M(z) := Γ1γ(z), z ∈ ρ(A0), (2.4)

are called the Gamma field and the Weyl function, respectively, corresponding to the boundary
triplet Π.
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Clearly, the Weyl function can equivalently be defined by:

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(A0).

The Gamma field γ(·) and the Weyl function M(·) in (2.4) are well defined. Moreover, both
γ(·) and M(·) are holomorphic on ρ(A0) and the following relations:

γ(z) =
(
I + (z − ζ)(A0 − z)−1

)
γ(ζ), z, ζ ∈ ρ(A0), (2.5)

and

M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), z, ζ ∈ ρ(A0), (2.6)

hold. Identity (2.6) yields that M(·) is [H]-valued Nevanlinna function (M(·) ∈ R[H]), i.e.
M(·) is [H]-valued holomorphic function on C± satisfying:

M(z) = M(z)∗ and
Im(M(z))

Im(z)
≥ 0, z ∈ C+ ∪ C−.

It also follows also from (2.6) that 0 ∈ ρ(Im(M(z))) for all z ∈ C±.
A Weyl function M(·) is said to be of a scalar type if there exists a scalar Nevanlinna

function m(·) such that the the representation:

M(z) = m(z)IH, z ∈ C+, (2.7)

holds where IH is the identity operator in H, see [5]. Obviously, M(·) is of a scalar type if
n±(A) = 1.

2.4. Krein-type formula for resolvents

Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) and γ(·) the corresponding
Weyl function and Gamma field, respectively. For any proper (not necessarily self-adjoint)
extension ÃΘ ∈ ExtA with non-empty resolvent set ρ(ÃΘ), the following Krein-type formula
holds (cf. [8–10]):

(AΘ − z)−1 − (A0 − z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(A0) ∩ ρ(AΘ). (2.8)

Formula (2.8) extends the known Krein formula for canonical resolvents to the case of any
AΘ ∈ ExtA with ρ(SΘ) 6= ∅. Moreover, due to relations (2.2), (2.3) and (2.4) formula (2.8) is
connected with the boundary triplet Π. We emphasize that this connection makes it possible to
apply the Krein-type formula (2.8) to boundary value problems.

2.5. Direct sum of operators

Let Sn be a densely defined closed symmetric operator in a Hilbert space Hn with

n+(Sn) = n−(Sn) ≤ ∞, n ∈ N. Consider the operator S :=
∞⊕
n=1

Sn acting in H :=
∞⊕
n=1

Hn,

the Hilbert direct sum of Hilbert spaces Hn. By definition, H = {f = ⊕∞n=1fn : fn ∈

Hn,
∞∑
n=1

||fn||2 <∞}. From this, it is apparent that:

S∗ =
∞⊕
n=1

S∗n, dom (S∗) = {f = ⊕∞n=1fn ∈ H : fn ∈ dom (S∗n),
∞∑
n=1

||S∗nfn||2 <∞}.
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Theorem 2.5 (Theorem 2.10 of [7]). Let Πn = {Hn,Γ
n
0 ,Γ

n
1} be a boundary triplet for S∗n and

Mn(·) the corresponding Weyl function, n ∈ N. A direct sum Π = ⊕∞n=1Πn forms an ordinary

boundary triplet for the operator S∗ =
∞⊕
n=1

S∗n if and only if

sup
n
||Mn(i)||Hn <∞, sup

n
||(Im(Mn(i)))−1||Hn . (2.9)

3. Weyl function computation

Let us describe the procedure to obtain all extension of the operator (1.1). Firstly, let us
consider symmetric Dirac operator, defined by (1.2). The adjoint operator D∗ appears as:

(D∗f)(x) = −ic d
dx
⊗ σ1f(x) +

c2

2
⊗ σ3f(x), x ∈ ∆,

f ∈ dom (D∗) = W 1,2(∆,C2).
(3.1)

The triplet ΠD = {HD,ΓD0 ,Γ
D
1 }, HD := C2,

ΓD0

(
f1

f2

)
:=

1√
2

(
f1(a) + f1(b)
f1(a)− f1(b)

)
,

ΓD1

(
f1

f2

)
:=

ic√
2

(
f2(a)− f2(b)
f2(a) + f2(b)

)
,

(3.2)

f ∈ dom (D∗), forms a boundary triplet for D∗. The Gamma field and the Weyl function are
given by:

γD(z)

(
ξ1

ξ2

)
=

1√
2


cos(k(z)(x− ν))

cos(k(z)d)

sin(k(z)(x− ν))

sin(k(z)d)

ik1(z)
sin(k(z)(x− ν))

cos(k(z)d
ik1(z)

cos(k(z)(x− ν))

sin(k(z)d)

(ξ1

ξ2

)
, (3.3)

z ∈ C±. Here,

k(z) :=
1

c

√
z2 − c4

4
, z ∈ C, (3.4)

where the branch of the multifunction k(·) is fixed by the condition k(x) > 0 for x >
c2

2
.

Notice that k(·) is holomorphic in C \
[
−c

2

2
,
c2

2

]
. Furthermore,

k1(z) :=
c k(z)

z + c2

2

, z ∈ C. (3.5)

which is also holomorphic in C \
[
−c

2

2
,
c2

2

]
. The function k1(·) admits the representation:

k1(z) =

√
z − c2

2

z + c2

2

, z ∈ C, (3.6)
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where the branch of

√
z − c2

2

z + c2

2

is fixed by the condition

√
x− c2

2

x+ c2

2

> 0 for x >
c2

2
. We obtain

the following:

MD(z) =

(
mD

1 (z) 0
0 mD

2 (z)

)
, z ∈ C±, (3.7)

where

mD
1 (z) := ck1(z) tan(k(z)d)

mD
2 (z) := −ck1(z) cot(k(z)d)

, z ∈ C±, (3.8)

and d :=
b− a

2
, ν :=

b+ a

2
. The self-adjoint extension D(1) := D∗ � ker (ΓD0 ) has the domain:

dom (D(1)) = {f ∈ W 1,2(∆,C2) : f1(a) = f1(b) = 0}, (3.9)

while the extension D(2) := D∗ � ker (ΓD1 ) has the domain:

dom (D(2)) = {f ∈ W 1,2(∆,C2) : f2(a) = f2(b) = 0}. (3.10)

In the following, we denote elements of L by ~f . In particular, we use the notation:

~f =

(
~f1

~f2

)
, ~fj ∈ L2(∆c,T), j = 1, 2. (3.11)

Let us construct the boundary triplet ΠL = {HL,ΓL0 , Γ̃
L
1 } for L∗.

Operator T gives us spectral decomposition T = ⊕∞n=0Tn, where Tn – bounded self-
adjoint operator defined on Tn, T = ⊕∞n=0Tn. Thus, operator L admits the representation:

L = ⊕∞n=0Ln = ⊕∞n=0D ⊗ ITn + ID ⊗ Tn.
For each Ln boundary triplet, the Gamma field and the Weyl function can be obtained easily,
as Tn is bounded, see [6]. The problem is that the direct sum of boundary triplets, in general,
is not a boundary triplet. The typical approach to such a problem is a regularization procedure,
see [14]. However, in our case, the regularization is not necessary.

Theorem 3.1. The Weyl function ML(·) is given by:

ML(z) =

(
mD

1 (z − T ) 0
0 mD

2 (z − T )

)
, z ∈ C±. (3.12)

Proof. We compute:

CD
j := sup

λ∈R
|mD

j (i− λ)| <∞, and ΛD
j := sup

λ∈R

1

|mD
j (i− λ)|

<∞, (3.13)

j = 1, 2. This relies on the fact that sup
λ∈R
|k1(i− λ)| <∞ and sup

λ∈R

1

|k1(i− λ)|
<∞.

Let us rewrite Ln = D + n, n ∈ N0 which is a closed symmetric operator defined on
Ln = D ⊗ Tn. Notice that L = ⊕n∈ZLn and L = ⊕n∈ZLn. The triplet ΠLn = ΠD ⊗ ITn =
{HLn ,ΓLn

0 ,ΓLn
1 },

HLn := HD ⊗ ITn , ΓLn
0 = ΓD0 ⊗ ITn , ΓLn

1 = ΓD1 ⊗ ITn , (3.14)

is a boundary triplet for L∗n, n ∈ Z. The corresponding Weyl function MLn(·) is given by:
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MLn(z) =

(
mD

1 (z − Tn) 0
0 mD

2 (z − Tn)

)
, n ∈ Z, z ∈ C±. (3.15)

Notice that:

CD
jn := ‖mD

j (i− Tn)‖ = sup
λ∈∆n

|mD
j (i− λ)| ≤ CD

j <∞, j = 1, 2, (3.16)

which yields:

‖MLn(i)‖ ≤ max{CD
1n, C

D
2n} ≤ max{CD

1 , C
D
2 } <∞. (3.17)

Similarly, we verify:

‖(MLn(i))−1‖ ≤ max{ΛD
1n,Λ

D
2n} ≤ max{ΛD

1 ,Λ
D
2 } <∞, (3.18)

where:

ΛD
jn := ‖(mD

j (i− Tn))−1‖ = sup
λ∈∆n

1

|mD
j (i− λ)|

< ΛD
j <∞, (3.19)

j = 1, 2. By Theorem 2.5, we see that Π′L = ⊕n∈ZΠLn is a boundary triplet for L. In particular,
the Weyl function ML(·) is computed by:

ML(z) =

(
mD

1 (z − T ) 0
0 mD

2 (z − T )

)
, z ∈ C±. (3.20)

�

The considerations remain true if we use the boundary triplet of [7, Section 3.1].
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The most intensive X-ray diffraction peaks for three types of carbon allotropes are analyzed: i) temperature-annealed

nanodiamond powder (carbon “onions”), ii) multi-walled carbon nanotubes, iii) layers of epitaxial graphene. A re-

construction of the X-ray diffraction pattern using an intershell distribution, obtained by high resolution transmis-

sion electron microscopy, was compared to the XRD data. For a qualitative analysis of the diffraction profiles,

the method of convolution of Lorentzians (size broadening profile), together with a statistical consideration of

interlayer spacings (lattice strain broadening profile) were used. For the case of iii) the statistical distribution

reduces to a Gaussian and the method itself transforms to a best fit procedure of the classical Voigt function to the

experimental data. For cases i) and ii) and the high-resolution electron microscopy-reconstructed data, the method

fits the experiment better using either negatively or positively -skewed statistical distributions, correspondingly.

A model of particles with a spiral internal structure and with radius-dependent spacings between the successive

turns may explain experimental data for these cases. The data for epitaxial graphene allows different interpretations,

including fluctuations of lattice spacings caused by distortions of the valence bands and angles in the graphene

planes or by the formation of scrolls.

Keywords: graphene, carbon onions, carbon, multiwalled carbon nanotubes, X-ray diffraction.

Received: 23 January 2016

1. Introduction

A study of the internal structure of new allotropic forms of carbon is important for
the progress of materials science. In particular, obtaining information about the structure of
materials and, therefore, their degree of perfection, helps to outline the areas for their practical
applications. Thus, the study of structures that break the symmetry of graphitic planes is
important for better understanding the practical realization of “theoretic” graphene as a material
with a zero band gap and high electron mobility. In this paper, we present results of a qualitative
analysis of the most intensive diffraction peak for several types of carbon allotropes constructed
with sp2-bonded atoms [1–4].

Because of graphene’s unique geometry, there exists various possibilities for the mod-
ification of valence angles and bond lengths which change the structure; e.g. the Dienes
(Stone-Wales) rearrangement [5]. Moreover, carbon polyhedra assembled with sp2 bonds play
an important role in the construction of nanoclusters having different shapes (e.g. carbon
spheroids and spiroids).

It is very well known that X-ray diffraction (XRD) is the standard method for crystal
structure analysis. However, allotropes such as graphene cannot be characterized by XRD
because there is only a single (002) plane. For formation of the most intensive XRD peak,
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similar to that for graphite, at least three planes are required [4]. Another problem with
new allotropes of carbon is a lack of symmetry of the XRD profiles for carbon “onions”, or,
more strictly, for “temperature-annealed nanodiamond powder” [1], and for multi-walled carbon
nanotubes (see, e.g. [2]). Here, we analyze the diffraction peaks for various carbon-based
materials that belong to the region of XRD angles where peaks corresponding to those between
(002) planes for crystalline graphite manifest themselves.

Usually line shape analysis of XRD peaks reduces to the realization of a best fit pro-
cedure for minimization of a functional, containing squares of sum of differences between
experimental data and the convolution of a size- (commonly a Lorentzian (Cauchy) function)
together with lattice strain broadening (commonly Gaussian) -profiles [6]. However, one may
consider the lattice-strain profile as a statistical distribution different for the normal law without
loss of generality. This statistical distribution can be asymmetric, e.g. negatively-skewed, as
was shown by us for carbon onions obtained in the course of temperature annealing of nanodi-
amonds [1]. Here, we will also show that the negatively-skewed distribution will fit the XRD
profile for multi-walled carbon nanotubes as well as for the carbon onions case. Moreover,
we will demonstrate that for the case of a lattice-spacing distribution of a single carbon onion
investigated by HRTEM [3], a statistical distribution with positive skewness will fit the exper-
imental data. When a Gaussian distribution is used in the convolution, the resulting profile is
termed Voigtian. Here, we will show that for the case of epitaxial graphite [4], a Voigt function
fits the experimental diffraction profiles quite well.

2. Experimental and methodology

We accurately digitized data presented in papers [1–4]. The technological parameters
of the manufactured samples are presented there. All XRD spectra were measured for CuKα
radiation.

2.1. Formalism

The intensity of diffraction V as a function of double diffraction angle θ may be written
in the following way:

V (θ) =

∞∫
−∞

S(θ)L(θ − θ′ − θ0)dθ′. (1)

Where θ0 is doubled Bragg’s angle, S(θ) is a statistical distribution function, L(θ) is Lorentzian
(Cauchy function):

L(θ) =
2A

π

wL
θ2 + w2

L

. (2)

Here, wL is full width of the Lorentz’s contour measured at its half height, and A is a constant.
The parameter wL is linked to Scherrer’s equation:

D =
Kλ

wLcos(θ0/2)
, (3)

and K is dimensionless constant that approximately equals to unity, θ0/2 is Bragg’s angle.
The equation (1) transforms to a Voigtian (Voigt function) when the function Ss(θ) follows the
normal distribution (Gaussian) law:

Ss(θ) =

√
b

π
e−θ

2b, (4)
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where b = 4 ln(2)/w2
G and wG is full width of Gaussian contour measured at its half height. In

this paper, we also modeled another statistical function, asymmetric, Sa. For its modeling we
used a double sigmoidal law in the following form:

Sa(θ) =
1

1 + exp
(
− θ+

w1
2

w2

)
1− 1

1 +
θ−w1

2

w3

 , (5)

where w1, w2 and w3 are parameters. For analysis of the intershell spacings in carbon onions
obtained by analysis of HRTEM images, we used a probe function which was selected empiri-
cally:

〈R(δr)〉 = A1 +
A1 − A2

1 + exp
(
− δr−δr0

β

) , (6)

where A1, A2, β, δr0 are parameters, 〈Rmax〉R(δr) is the mean radius of the shell: 〈R(δr)〉 ≤
Rmax; δr is a distance between two adjacent shells; Rmax is the onion’s outer radius.

One may introduce a function representing the distribution of intershell distances, g(δr):

g(δr) =
d 〈M(δr)〉

dδr
, (7)

where 〈M(δr)〉 is the mean number of intershell distances δr appearing in the interval dδr. On
other hand, the following equation is also valid:

〈R(δr)〉 = 〈M(δr)〉 〈δr〉 , (8)

where δr is a mean intershell distance. One may calculate moments of the above distribution
function (equation (7)) in the following way:

〈M(δr)〉 =
δr∫

δrmin

g(δr)dδr, (9)

and

〈δr〉 =
δr∫

δrmin

δrg(δr)dδr. (10)

Exploiting equation (8) and the assumption g(δr) ∼ δrg(δr), it easy to obtain the equation:

〈R(δr)〉 ≈

 δr∫
δrmin

g(δr)dδr

2

. (11)

Thus:

g(δr) ≈
∂
(
〈R(δr)〉1/2

)
∂δr

. (12)
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2.2. Analysis of experimental data

2.2.1. Annealed nanodiamonds and multiwalled carbon nanotubes. Figure 1 presents the XRD
pattern for temperature-annealed nanodiamonds [1]. It is negatively-skewed. We met a difficulty
finding a unique selection of the symmetric component for the results presented in the Fig. 1
and so used equations (1), (2) and (5) for a single negatively-skewed profile. The result of
the calculation is depicted by the continuous curve. Parameters were obtained by the least
squares fitting technique. The asymmetry of the internal structure of the onion may result in
the skewness. A sketch of the cross section of such an onion is presented in the inset. Such
kind of spiral onions were termed as carbon spiroids [7]. In the particular case presented here,
the radius of the spiral turn depends irregularly on the spacing between successive turns. The
principal role of such spiroidal particles in the formation of the XRD profile may reflect their
prevailing number in a comparison to ‘deal’ spheroids.

FIG. 1. The XRD profile for a powder of nanodiamonds transformed to onions by
annealing. The black squares and solid contour show experimental data from [1]
and the result of calculation with equations (1), (2) and (5) , correspondingly for
w1 = 0◦, w2 = 3.11◦, w3 = 1.01◦, wL = 0.5◦. The insert shows a schematic of
the equatorial section of a spiroidal particle (spiroid).

A slightly different situation occurs in the case of multi-walled carbon nanotubes. Fig. 2
shows XRD profile for the nanotubes. One may see the result of decomposition of the exper-
imental data [2] on two contours. One is asymmetric ([equations (1), (2) and (5)]; the curve
marked by number 1) and the second one is symmetric (Voigtian [equations (1),(2) and (4)];
curve 2). By analogy with carbon spiroids, we may term nanotubes contributing to contour (1)
as spirocylindroids. A sketch of the cross-section of a spirocylindroid is presented in the insert
to Fig. 2. In this case there is no principal role played by spiroidal particles to the XRD profile
which may reflect a contribution from ‘ideal’ nanotubes that is comparable with the contribution
of the spirocylindroids.

2.2.2. Carbon onions. Here, we interpret the experimental data from paper [1] where the
dependence of the distances between successive shells of the carbon spheroids are presented
as a function of the shell’s radius. The inverse function is portrayed in Fig. 3. For simplicity,
we kept symbols marking experimental points similar to ones presented in [1]. The full line
marked by number 1 represents data calculated with equation (6) and the triangles illustrate
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FIG. 2. The XRD profile for multi-walled carbon nanotubes. The black squares
portray experimental data from [2]; the curve marked by number 1 presents results
of calculation with equations (1), (2) and (5) with the following parameters:
w1 = 0◦, w2 = 2◦, w3 = 0.456◦, wL = 1◦, A = 0.43. The line marked by
number 2 shows the calculation with equations (1), (2) and (4) for θ0 = 25.75◦,
A = 0.178, wG = 0.87◦,wL = 0.633◦ (“ideal” nanotube). Curve 3 is the sum of
curves (1) and (2). The insert shows a schematic of the cross section of a
spirocylindroid.

equation (12). The full line connecting the triangles is the Gaussian approximation. Therefore,
the obtained distribution is symmetric. However, it is easy to see in Fig. 4 that after conversion
of the intershell distances to the double diffraction angles with the help of Bragg’s law, the
resulting dependence is no longer symmetric and is positively-skewed. This characterizes the
lattice strain function. To use the lattice strain function in equation (1), one has to shift the
argument values to the left, starting the new argument zero point from the position of the
maximum. The parameter wL was calculated using equation (3) using data of the diameter of
carbon onions from [3] and the CuKα radiation wavelength. The resulting convolution of the
lattice strain and Lorentzian profiles are presented in Fig. 4 by open circles. Such dependences
characterize the internal structure of the carbon onion. Obviously, while the area of larger angles
characterizes the central part of the onion, where some compression of the lattice spacings was
observed [3], the region for smaller angles characterizes its peripheral region. It is natural to
attribute such behavior to a spiroid with lattice spacings expanding from central to peripheral
area. It seems obvious to draw similar conclusions about the behavior of lattice spacings for the
cases considered above. However, the degrees of expansions are different. For cases of Figs. 1
and 2, the diffraction profiles are negatively skewed, meaning a faster drop of the function in
the smaller intershell distances region and a slower drop in the larger intershell distances region.

An estimation of Scherrer’s size for thermally annealed nanodiamonds and multi-walled
nanotubes (see captions to Fig. 1 and Fig. 2 and equation (3)), i.e. ∼ 14 nm, indicates the
formation of relatively large clusters. These may appear for the case of thermally-annealed
nanodiamonds because this size is sufficiently larger than the mean size of pristine nanodia-
monds (∼ 4 nm). The cluster enlargement may appear because of single cluster aggregation
to bigger particles. However we cannot extend this result to nanotubes because of a lack of
information about their origin. In this case of aggregation to the resulting “lattice strain” profile
may transform to statistics of lattice spacings in larger clusters with more complex structures.
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FIG. 3. The black squares give the experimental dependence of a shell’s radius
normalized to the external radius of a multishell carbon spheroid (carbon “onion”)
as a function of the intershell distances, as published in [3]. The continuous
line 1 represents an approximation of the experimental data using equation (6)
with the following set of parameters: A1 = 0.19 ± 0.03, A2 = 0.97 ± 0.03,
δr0 = 2.696 ± 0.016 Å, β = 0.11 ± 0.02 Å. The triangles give results for the
calculation of the distribution function using equation (12); the full line shows
the Gaussian fit.

FIG. 4. The lattice strain function g(θ) of intershell spacings for a carbon mul-
tishell particle plotted versus the diffraction angle is given by triangles after
conversion of the spacings to double diffraction angles by Bragg’s law. Circles
depict results of the calculation with equation (1) with the diffraction profile
from a shifted lattice strain function. Here, for calculation of the XRD profile,
the following parameters were used: θ0 = 33.98◦ is position of the maximum and
the parameter wL = 0.6◦ is calculated with Scherrer’s equation (3) for the actual
cluster diameter (see paper [3]).



346 A. V. Siklitskaya, S. G. Yastrebov, R. Smith

2.2.3. Epitaxial graphite. The experimental data for epitaxial graphite together with their fit
by a Voigtian function are collected in Fig. 5 [4]. One may see a good agreement between the
model and experimental data for all cases presented in Fig. 5. Two possible versions of graphene
flaks deformation are presented in the insets- sine and cosine types of distortions (the left inset
to Fig. 5) and formation of scrolls (spirocylindroids). A similar effect of transformation of
material from graphene to scrolls has been presented in paper [8]. The distortion of the graphene
planessymmetries results in the annihilation of their valuable properties such as zero effective
mass and high mobility of charge carriers. Fig. 6 shows the width of the lattice strain profile vs
substrate material and technology of deposition. One can clearly see that all grown layers are
distorted. The lesser distorted sample is graphite obtained by the thermal decomposition of SiC.
The parameter wL → 0 is only for the profile marked in Fig. 5 by by triangles. It means that
size of graphite fragment is large enough to be estimated by Scherrer’s formula (equation 3)
and the Voigtian transforms to a Gaussian. Only the lattice strain profile is available from the
experiment. Fig. 7 presents Scherrer’s diameter for a cluster of epitaxial graphite grown on
different substrates, calculated using wL from the caption to Fig. 5.

FIG. 5. A Voigtian fit of experimental diffraction profiles for epitaxial
graphite [4]. Different symbols stand for different substrates. The continuous
line presents results of the best fit. 1. The inverted triangles correspond to epi-
taxial graphite grown by CVD on the surface C 6H–SiC: θ0 = 26.42◦ ± 0.002,
A = 1.09±0.003, wG = 0.81±0.01◦, wL = 0.601±0.01. 2. The inclining crosses
give the thermal decomposition of the surface C 4H–SiC: θ0 = 26.33 ± 0.002◦,
A = 1.012± 0.005, wG = 1.465± 0.014◦, wL = 0.034± 0.02. 3. The circles rep-
resent the thermal decomposition of the surface C 6H–SiC: θ0 = 26.51± 0.001◦,
A = 1.07 ± 0.004, wG = 0.57 ± 0.01o, wL = 0.465 ± 0.01◦. 4. Trian-
gles – CVD grown epitaxial graphite grown by CVD on substrate Si–SiO2–Ni:
θ0 = 26.45 ± 0.001◦, A = 1.000 ± 0.0004, wG = 1.04 ± 0.001◦, wL = 0. Insets
show two modes of deformation for the graphene planes: left – sine (cosine)
through formation of Dienes (Stone-Wales) defects and right – through formation
of spirocylindroids.

.
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FIG. 6. The parameter wG calculated by the best fit procedure from results
presented in Fig. 5 for different materials

FIG. 7. Scherrer’s diameter calculated from equation (3) and parameters wL
presented in the captions to Fig. 5 for different substrate materials and technolo-
gies

3. Conclusions

The estimations performed in this paper lead to two preliminary conclusions:
1. The spiroid-spirocylindroid model of a particle with interturn distances expanding from

center of the particle to its peripheral area fits experimental data for carbon onions and
multi-walled carbon nanotubes quite well.

2. Spiroidal models might not be unique.
3. XRD study reveals a distortion of the symmetry of graphene planes for the epitaxial-

grown graphite clusters.
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4. The distortions break the symmetry of graphene planes and, therefore, may affect nega-
tively charge transport properties.

5. A lack of profiles for a single graphene layer makes it difficult to standardize XRD for
this material.

References

[1] Mykhaylyk O. O., Solonin Y. M., Batchelder D. N. et al. Transformation of nanodiamond into carbon onions:
A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy,
x-ray diffraction, small-angle X-ray scattering, and ultraviolet Raman spectroscopy. Appl. Phys., 2005, 97,
074302, 16 pp.

[2] Shah N. A., Abbas M., Amin M. et al. Design and analysis of functional multiwalled carbon nanotubes for
infrared sensors. Sensor Actuat A-Phys., 2013, 203, P. 142–148.

[3] Banhart F., Ajayan P. M. Carbon onions as nanoscopic pressure cells for diamond formation. Nature, 1996,
382, P. 433–435.

[4] Tokarczyk M., Kowalski G., Kepa H. et al. Multilayer graphene stacks grown by different methods-thickness
measurements by X-ray diffraction, Raman spectroscopy and optical transmission. Crystallogr. Reports, 2013,
58(7), P. 1053–1057.

[5] Ma J. Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev.B, 2009, 80, 033407,
4 pp.

[6] Langford J. L, Delhez R., de Keijser Th., et al. Profile Analysis for Microcrystalline Properties by the Fourier
and Other Methods. Aust. J. Phys., 1988, 41, P. 173–181.

[7] Ozawa M., Goto H., Kusunoki M. Continuously Growing Spiral Carbon Nanoparticles as the Intermediates
in the Formation of Fullerenes and Nanoonions. Phys. Chem. B, 2002, 106, P. 7135–7138.

[8] Zilong Liu Z., Qingzhong X., Tao Ye. Carbon nanoscroll from C4H/C4F-type graphene superlattice: MD and
MM simulation insights. Phys. Chem. Chemi. Physics, 2015, 17(5), P. 3441–3450.



NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2016, 7 (2), P. 349–370

Light scattering of Laguerre-Gaussian beams:
near-field structures and symmetries

A. D. Kiselev1, D. O. Plutenko2,3

1ITMO University, Kronverkskiy, 49, St. Petersburg, 197101, Russia
2Institute of Physics of National Academy of Sciences of Ukraine, Kiev, Ukraine

3Physical Engineering Teaching Research Center of National Academy of Sciences of Ukraine,
Kiev, Ukraine

alexei.d.kiselev@gmail.com, dmplutenko@gmail.com

PACS 42.25.Fx, 42.68.Mj, 42.25.Bs DOI 10.17586/2220-8054-2016-7-2-349-370

We apply the method of far-field matching to remodel laser beams and study light scattering from spherical particles

illuminated by a Laguerre-Gaussian (LG) light beam. The optical field in the near-field region is analyzed for

purely azimuthal LG beams characterized by a nonzero azimuthal mode number mLG. The morphology of photonic

nanojets is shown to significantly vary, depending the mode number and the scatterer’s characteristics. The cases

of negative index metamaterial and metallic Mie scatterers are discussed. We also discuss the symmetry properties

of laser beams and related results for the optical forces. The near-field structure of optical vortices associated with

the components of the electric field, being highly sensitive to the mode number, is found to be determined by the

twofold rotational symmetry.

Keywords: light scattering, Laguerre-Gaussian beams, photonic nanojets, optical vortices.

Received: 22 January 2016

1. Introduction

The scattering of light and other radiation by particles has long been known to be of
crucial importance in a great variety of science and engineering disciplines. The problem of
light scattering by spherically shaped particles dates back to the more than century-old classical
exact solution due to Mie [1]. The analysis of a Mie–type theory uses a systematic expansion
of the electromagnetic field over vector spherical harmonics [2–5]. The specific form of the
expansions is also known as the T–matrix ansatz that has been widely used in the related
problem of light scattering by nonspherical particles [4, 6, 7]. More recently, this strategy has
been successfully applied to optically anisotropic particles [8–13].

The Mie solution, in its original form, applies to the scattering of plane electromagnetic
waves by uniform optically isotropic spherical particles (the so-called Mie scatterers). For
laser beams, it is generally necessary to go beyond the plane-wave approximation and light
scattering from arbitrary shaped laser beams [14–18] has been the key subject of the Mie–
type theory — the so-called generalized Lorenz–Mie theory (GLMT) — extended to the case of
arbitrary incident-beam scattering [5, 19]. In such generalization of the Mie theory, the central
and the most important task is to describe the illuminating beams in terms of expansions over
a set of basis wavefunctions. In GLMT, a variety of methods were developed to evaluate the
expansion coefficients that are referred to as the beam shape coefficients (for a recent review
see Ref. [20] and references therein).

The central problem with laser beams is due to the fact that in their standard mathe-
matical form, these beams are not radiation fields which are solutions to Maxwell’s equations.
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Typically, the analytical treatment of laser beams is performed using the paraxial approxima-
tion [21] and the beams are described as pseudo-fields which are only approximate solutions of
the vector Helmholtz equation (higher order corrections can be used to improve the accuracy of
the paraxial approximation [21, 22]).

Unfortunately, multipole expansions do not exist for such approximate pseudo-fields.
Therefore, some remodelling procedure must be invoked to obtain a real radiation field which
can be regarded as an approximation to the original paraxial beam.

The basic concept that might be called matching the fields on a surface lies at the heart
of various traditional approaches to the laser beam remodelling and is based on the assumption
that there is a surface where the actual incident field is equal to the paraxial field. Examples
of physically reasonable and natural choice are scatterer-independent matching surfaces such
as a far-field sphere [23], the focal plane (for beams with well-defined focal planes) [23, 24],
and a Gaussian reference sphere representing a lens [25]. Given the paraxial field distribution
on the matching surface, the beam shape coefficients can be evaluated using either numerical
integration or the one-point matching method [23].

An alternative approach is to analytically describing the propagation of a laser beam,
which is known in the paraxial limit, without recourse to the paraxial approximation. In
Refs. [26–30] this strategy has been applied to the important case of Laguerre–Gaussian (LG)
beams using different methods such as the vectorial Rayleigh–Sommerfeld formulas [27, 30],
the vector angular spectrum method [29], approximating LG beams by nonparaxial beams with
(near) cylindrical symmetry [26, 28].

The nonparaxial beams are solutions of Maxwell’s equations and the beam shape coef-
ficients can be computed using the methods of GLMT. In recent studies of light scattering by
spherical and spheroidal particles illuminated with LG beams [31, 32], the analytical results of
Ref. [28] were used to calculate the beam shape coefficients.

In this paper, the problem of light scattering from LG beams that represent optical
vortex laser beams exhibiting a helical phase front and carrying a phase singularity will be of
our primary interest. The topological charge characterizing the phase singularity and associated
orbital angular momentum gives rise to distinctive phenomena such as soliton generation [33],
entanglement of photon quantum states, orbital angular momentum exchange with atoms and
molecules (in addition to the collection of papers [34], see reviews in Ref. [35]), rotation and
orbital motion of spherical particles illuminated with LG beams [36, 37].

In our calculations, we shall follow Refs. [10, 38] and use the T–matrix approach in
which the far-field matching method is combined with the results for nonparaxial propagation
of LG beams [29,30]. Our goal is to examine the near-field structure of optical field depending
on the parameters characterizing both the beam and the scatterer.

This structure has recently attracted considerable attention that was stimulated by an
upsurge of interest in the so-called photonic nanojets and their applications (for a review see
Ref. [39]). These nanojets were originally identified in finite-difference-time-domain simula-
tions [40, 41] as narrow, high-intensity electromagnetic beams that propagate into background
medium from the shadow-side surface of a plane-wave illuminated dielectric microcylinder [40]
or microsphere [41] of diameter greater than the illuminating wavelength. There are several
potentially important applications for the photonic nanojets to detect and manipulate nanoscale
objects, subdiffraction-resolution nanopattering and nanolithography, low-loss waveguiding, and
ultra-density optical storage. These applications are reviewed in Ref. [39].

The layout of the paper is as follows: in Sec. 2, we outline our theoretical approach. The
analytical results for the beam shape coefficients of LG beams and the fundamental properties
of the far-field angular distributions are described in Sec. 3. The numerical procedure and the
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results of numerical computations representing the near-field intensity distributions and phase
maps of electric field components for purely azimuthal LG beams are presented in Sec. 4.
Finally, in Sec. 5, we present our results and make some concluding remarks.

2. Lorenz–Mie theory: Wave functions and T–matrix

In this section, we introduce all necessary notations and briefly discuss how the proper-
ties of Mie scattering can be described in terms of the T–matrix [2, 4]. Our formulation closely
follows to the line of our presentation given in Refs. [10, 38].

We consider scattering by a spherical particle of radius Rp embedded in a uniform
isotropic dielectric medium with dielectric constant εmed and magnetic permeability µmed. The
dielectric constant and magnetic permittivity of the particle are εp and µp, respectively. For a
harmonic electromagnetic wave (time–dependent factor is exp{−iωt}), the Maxwell equations
can be written in the following form:

−ik−1i ∇× E =
µi
ni
H , (1a)

ik−1i ∇×H =
ni
µi
E, i =

{
med, r > Rp

p, r < Rp

(1b)

where nmed =
√
εmedµmed is the refractive index outside the scatterer (in the ambient medium),

where r > Rp (i = med) and ki = kmed = nmedkvac (kvac = ω/c = 2π/λ is the free–space
wave number); np =

√
εpµp is the refractive index for the region inside the spherical particle

(scatterer), where r < Rp (i = p) and ki = kp = npkvac.
The electromagnetic field can always be expanded using the vector spherical harmonic

basis [42]. There are three cases of these expansions that are of particular interest. They
correspond to the incident wave, {Einc,Hinc}, the outgoing scattered wave, {Esca,Hsca} and
the electromagnetic field inside the scatterer, {Ep,Hp}:

Eα =
∑
jm

[
α
(α)
jmM

(α)
jm(ρi, r̂) + β

(α)
jmN

(α)
jm(ρi, r̂)

]
, α ∈ {inc, sca, p} (2a)

Hα = ni/µi
∑
jm

[
α
(α)
jmN

(α)
jm(ρi, r̂)− β

(α)
jmM

(α)
jm(ρi, r̂)

]
, (2b)

M
(α)
jm(ρi, r̂) = ik−1i ∇×N

(α)
jm = z

(α)
j (ρi)Y

(m)
jm (r̂), (2c)

N
(α)
jm(ρi, r̂) = −ik−1i ∇×M

(α)
jm =

√
j(j + 1)

ρi
z
(α)
j (ρi)Y

(0)
jm(r̂) +Dz

(α)
j (ρi)Y

(e)
jm(r̂), (2d)

i =

{
med, α ∈ {inc, sca}
p, α = p

, z
(α)
j (ρi) =


jj(ρ), α = inc

h
(1)
j (ρ), α = sca

jj(ρp), α = p

, (2e)

where ρ ≡ ρmed = kmedr, ρp = kpr ≡ nρ, and n = np/nmed is the ratio of refractive indexes
also known as the optical contrast; Df(x) ≡ x−1∂x(xf(x)).
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According to Ref. [10], the spherical harmonics can be conveniently expressed in terms
of the Wigner D–functions [42, 43] as follows:

Y
(m)
jm (r̂) = Nj/

√
2
{
Dj ∗
m,−1(r̂) e−1(r̂)−D

j ∗
m, 1(r̂) e+1(r̂)

}
, (3a)

Y
(e)
jm(r̂) = Nj/

√
2
{
Dj ∗
m,−1(r̂) e−1(r̂) +Dj ∗

m, 1(r̂) e+1(r̂)
}
, (3b)

Y
(0)
jm(r̂) = NjD

j ∗
m, 0(r̂) e0(r̂) = Yjm(r̂)r̂, Nj = [(2j + 1)/4π]1/2, (3c)

where Y
(m)
jm , Y

(e)
jm and Y

(0)
jm are electric, magnetic and longitudinal harmonics, respectively;

e±1(r̂) = ∓(ex(r̂) ± iey(r̂))/
√
2; ex(r̂) ≡ ϑ̂ = (cos θ cosφ, cos θ sinφ,− sin θ), ey(r̂) ≡ ϕ̂ =

(− sinφ, cosφ, 0) are the unit vectors tangential to the sphere; φ (θ) is the azimuthal (polar) angle
of the unit vector r̂ = r/r = (sin θ cosφ, sin θ sinφ, cos θ) ≡ e0(r̂) ≡ ez(r̂); f(r̂) ≡ f(φ, θ).
(Hats will denote unit vectors and an asterisk will indicate complex conjugation).

Note that, for the irreducible representation of the rotation group with the angular number
j, the D-functions, D j

mν(α, β, γ) = exp(−imα)d jmµ(β) exp(−iµγ), give the elements of the
rotation matrix parametrized by the three Euler angles [42,43]: α, β and γ. In formulas (3) and
throughout this paper, we assume that γ = 0 and D j

mν(r̂) ≡ D j
mν(φ, θ, 0). These D-functions

meet the following orthogonality relations [42, 43]

〈D j ∗
mν(r̂)D

j′

m′ν(r̂)〉r̂ =
4π

2j + 1
δjj′ δmm′ , (4)

where 〈 f 〉r̂ ≡
2π�

0

dφ

π�

0

sin θdθ f(r̂). The orthogonality condition (4) and Eqs. (3) show that a

set of vector spherical harmonics is orthonormal:

〈Y(α) ∗
jm (r̂) ·Y(β)

j′m′(r̂)〉r̂ = δαβ δjj′ δmm′ . (5)

It can be shown [38] that the vector spherical harmonics (3) can also be recast into the
well-known standard form [44]:

Y
(m)
jm (r̂) = njLYjm = −ir̂×Y

(e)
jm, (6)

Y
(e)
jm(r̂) = njr∇Yjm = −ir̂×Y

(m)
jm , nj ≡ [j(j + 1)]−1/2, (7)

where ∂x stands for a derivative with respect to x and Yjm(r̂) ≡ Yjm(φ, θ) is the normalized
spherical function; L is the operator of angular momentum given by:

iL = r×∇ = ϕ̂ ∂θ − ϑ̂ [sin θ]−1∂φ. (8)

The vector wave functions, M(α)
jm and N

(α)
jm , are the solenoidal solutions of the vector

Helmholtz equation that can be derived (a discussion of the procedure can be found, e.g., in
Ref. [45]) from solutions of the scalar Helmholtz equation, (∇2 + k2)ψ(r) = 0, taken in the
form:

ψ
(α)
jm = njz

(α)
j (kr)Yjm(r̂), nj ≡ [j(j + 1)]−1/2, (9)

where z(α)j (x) is either a spherical Bessel function, jj(x) = [π/(2x)]1/2Jj+1/2(x), or a spherical

Hankel function [46], h(1, 2)j (x) = [π/(2x)]1/2H
(1, 2)
j+1/2(x).
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In the far field region (ρ � 1), the asymptotic behavior of the spherical Bessel and
Hankel functions is known [46]:

ij+1h
(1)
j (ρ), ijDh

(1)
j (ρ) ∼ exp(iρ)/ρ, (10)

(−i)j+1h
(2)
j (ρ), (−i)jDh(2)j (ρ) ∼ exp(−iρ)/ρ, (11)

ij+1jj(ρ), i
j+1Djj+1(ρ) ∼

[
exp(iρ)− (−1)j exp(−iρ)

]
/(2ρ). (12)

So, the spherical Hankel functions of the first kind, h(1)j (ρ), describe the outgoing waves,

whereas those of the second kind, h(2)j (ρ), represent the incoming waves.
Thus, outside the scatterer, the optical field is the sum of the incident wave field with

z
(inc)
j (ρ) = jj(ρ) and the scattered waves with z(sca)j (ρ) = h

(1)
j (ρ), as required by the Sommerfeld

radiation condition. The incident field is the field that would exist without a scatterer and
therefore includes both incoming and outgoing parts (see Eq. (12)) because, without scattering,
what comes in must go outwards again. As opposed to the spherical Hankel functions that are
singular at the origin, the incident wave field should be finite everywhere, and thus, is described
by the regular Bessel functions jj(ρ).

Now the incident wave is characterized by amplitudes α(inc)
jm , β(inc)

jm and the scattered

outgoing waves are similarly characterized by amplitudes α(sca)
jm , β(sca)

jm . As long as the scattering

problem is linear, the coefficients α(sca)
jm and β(sca)

jm can be written as linear combinations of α(inc)
jm

and β(inc)
jm :

α
(sca)
jm =

∑
j′,m′

[
T 11
jm, j′m′ α

(inc)
j′m′ + T 12

jm, j′m′ β
(inc)
j′m′

]
,

β
(sca)
jm =

∑
j′,m′

[
T 21
jm, j′m′ α

(inc)
j′m′ + T 22

jm, j′m′ β
(inc)
j′m′

]
. (13)

These formulas define the elements of the T–matrix in the most general case.
In general, the scattering process mixes angular momenta [6]. The light scattering from

uniformly anisotropic scatterers [10,11,47,48] provides an example of such a scattering process.
By contrast, in simpler scattering processes, such angular momentum mixing does not take place.
For example, radial anisotropy maintains the spherical symmetry of the scatterer [8,10,13]. The
T–matrix of a spherically symmetric scatterer is diagonal over the angular momenta and the
azimuthal numbers: T nn

′

jj′,mm′ = δjj′δmm′T nn
′

j .

In order to calculate the elements of T-matrix and the coefficients α(p)
jm and β

(p)
jm, we

need to use the continuity for the tangential components of the electric and magnetic fields as
boundary conditions at r = Rp (ρ = kmedRp ≡ x). Thus, the coefficients of the expansion
for the wave field inside the scatterer, α(p)

jm and α(p)
jm, are expressed in terms of the coefficients

describing the incident light as follows:

iα
(p)
jm =

α
(inc)
jm

µ−1vj(x)u′j(nx)− n−1v′j(x)uj(nx)
, µ = µp/µmed, (14)

iβ
(p)
jm =

β
(inc)
jm

n−1vj(x)u′j(nx)− µ−1v′j(x)uj(nx)
, n = np/nmed, (15)
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where x = kmedRp, uj(x) = xjj(x) and vj(x) = xh
(1)
j (x). A similar result relates the scattered

and incident waves:

α
(sca)
jm = T 11

j α
(inc)
jm =

n−1u′j(x)uj(nx)− µ−1uj(x)u′j(nx)
µ−1vj(x)u′j(nx)− n−1v′j(x)uj(nx)

α
(inc)
jm , (16)

β
(sca)
jm = T 22

j β
(inc)
jm =

µ−1uj(x)u
′
j(nx)− n−1u′j(x)uj(nx)

n−1vj(x)u′j(nx)− µ−1v′j(x)uj(nx)
β
(inc)
jm , (17)

defining the T-matrix for the simplest case of a spherically symmetric scatterer. In addition,
since the parity of electric and magnetic harmonics with respect to the spatial inversion r̂→ −r̂
({φ, θ} → {φ+ π, π − θ}) is different:

Y
(m)
jm (−r̂) = (−1)jY(m)

jm (r̂), Y
(e)
jm(−r̂) = (−1)j+1Y

(e)
jm(r̂), (18)

where f(r̂) ≡ f(φ, θ) and f(−r̂) ≡ f(φ + π, π − θ), they do not mix provided the mirror
symmetry has not been broken. In this case the T-matrix is diagonal and T 12

j = T 21
j = 0. The

diagonal elements T 11
j ≡ aj and T 22

j ≡ bj are also called the Mie coefficients.

3. Far-field matching

The formulas (14)–(17) are useful only if the expansion for the incident light beam is
known. First we briefly review the most studied and fundamentally important case where the
incident light is represented by a plane wave.

The electric field of a transverse plane wave propagating along the direction specified
by a unit vector k̂inc is:

Einc = E(inc) exp(ikinc · r) , E(inc) =
∑
ν=±1

E(inc)
ν eν(k̂inc) , kinc = kk̂inc . (19)

where the basis vectors e±1(k̂inc) are perpendicular to k̂inc. Then, the vector version of the
well-known Rayleigh expansion (see, for example, [2, 10, 38]) immediately gives the expansion
coefficients for the plane wave:

α
(inc)
jm = iαj

∑
ν=±1

Dj
mν(k̂inc)νE

(inc)
ν , β

(inc)
jm = −αj

∑
ν=±1

Dj
mν(k̂inc)E

(inc)
ν , (20)

where αj = ij+1[2π(2j + 1)]1/2.
Now, we consider a more general, case where an incident electromagnetic wave is

written as a superposition of propagating plane waves:

Einc(r) ≡ Einc(ρ, r̂) = 〈exp(iρ k̂ · r̂)Einc(k̂)〉k̂, Einc(k̂) =
∑
ν=±1

Eν(k̂) eν(k̂), (21a)

Hinc(r) ≡ Hinc(ρ, r̂) =
n

µ
〈exp(iρ k̂ · r̂)

[
k̂× Einc(k̂)

]
〉k̂ , (21b)

where 〈 f 〉k̂ ≡
2π�

0

dφk

π�

0

sin θkdθk f .

Our first step is to examine asymptotic behavior of the wave field (21) in the far-field
region, ρ � 1. The results can be easily obtained by using the asymptotic formula for a plane
wave (see, e.g., [4])

exp(iρ k̂ · r̂) ∼ −2πi
ρ

[
exp(iρ)δ(k̂− r̂)− exp(−iρ)δ(k̂+ r̂)

]
at ρ� 1, (22)
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where δ(k̂∓ r̂) is the solid angle Dirac δ-function symbolically defined through the expansion:

δ(k̂∓ r̂) =
∞∑
l=0

l∑
m=−l

Ylm(±r̂)Y ∗lm(k̂). (23)

Applying relation (22) to the plane wave superposition (21a) gives the electric field of the
incident wave in the far-field region:

Einc(ρ, r̂) ∼ E
(∞)
inc (ρ, r̂) =

1

ρ

[
exp(iρ)E

(inc)
out (r̂) + exp(−iρ)E(inc)

in (r̂)
]
, (24)

E
(inc)
in (r̂) = −E(inc)

out (−r̂), (25)

where Eout(r̂) is the far-field angular distribution for the outgoing part of the electric field of
the incident wave:

E
(inc)
out (r̂) = −2πiEinc(r̂) = E

(out)
θ (r̂) eθ(r̂) + E

(out)
φ (r̂) eφ(r̂), (26)

whereas the incoming part of the incident wave is described by the far-field angular distribution
E

(inc)
in (r̂).

The result for the far-field distribution of the magnetic field (21b) can be written in the
similar form:

Hinc(ρ, r̂) ∼ H
(∞)
inc (ρ, r̂) =

1

ρ

[
exp(iρ)H

(inc)
out (r̂) + exp(−iρ)H(inc)

in (r̂)
]
, (27)

H
(inc)
in (r̂) = −H(inc)

out (−r̂), (28)

µ/nH
(inc)
out (r̂) = r̂× E

(inc)
out (r̂), µ/nH

(inc)
in (r̂) = r̂× E

(inc)
out (−r̂). (29)

Formulas (24)-(29) explicitly show that, in the far-field region, the incident wave field is defined
by the angular distribution of the outgoing wave (26).

Alternatively, the far-field distribution of an incident light beam, E(inc)
out (r̂), can be found

from the expansion over the vector spherical harmonics (2a). The far-field asymptotics for the
vector wave functions that enter the expansion for the incident wave (2):

M
(inc)
jm (ρ, r̂) ∼ (−i)j+1

2ρ

[
exp(iρ)Y

(m)
jm (r̂)− exp(−iρ)Y(m)

jm (−r̂)
]
, (30)

N
(inc)
jm (ρ, r̂) ∼ (−i)j

2ρ

[
exp(iρ)Y

(e)
jm(r̂)− exp(−iρ)Y(e)

jm(−r̂)
]
, (31)

can be derived from Eqs. (2c)-(2d) with the help of the far-field relation (12). Substituting
Eqs. (30) and (31) into expansion (2a) gives the far-field distribution of the form (24) with:

E
(inc)
out (r̂) = 2−1

∑
jm

(−i)j+1
[
α
(inc)
jm Y

(m)
jm (r̂) + iβ

(inc)
jm Y

(e)
jm(r̂)

]
. (32)

The coefficients of the incident wave can now easily be found as the Fourier coefficients of
the far-field angular distribution, Eout, expanded using the vector spherical harmonics basis (3).
The final result reads:

α
(inc)
jm = 2 ij+1〈Y(m) ∗

jm (r̂) · E(inc)
out (r̂)〉r̂ = iαj

∑
ν=±1

ν〈D j
mν(k̂)Eν(k̂)〉k̂, (33a)

β
(inc)
jm = 2 ij〈Y(e) ∗

jm (r̂) · E(inc)
out (r̂)〉r̂ = −αj

∑
ν=±1

〈D j
mν(k̂)Eν(k̂)〉k̂. (33b)



356 A. D. Kiselev, D. O. Plutenko

A comparison between the expressions on the right hand side of Eq. (33) and those for the plane
wave (20) shows that, in agreement with the representation (21a), the result for plane waves
represents the limiting case where the angular distribution is singular: Eν(k̂) = E(inc)

ν δ(k̂−k̂inc).
By using Eqs. (6) and (7) formulas (33) can conveniently be rewritten in the explicit

form:

α
(inc)
jm = 2nj i

j+1〈Y ∗jm(r̂) (L · E
(inc)
out (r̂))〉r̂ =

2nj i
j

2π�

0

dφ

π�

0

dθ Y ∗jm(φ, θ)
[
∂θ(sin θE

(out)
φ )− ∂φE(out)

θ

]
, (34a)

β
(inc)
jm = −2nj ij 〈Y ∗jm(r̂) (r∇ · E

(inc)
out (r̂))〉r̂ =

− 2nj i
j

2π�

0

dφ

π�

0

dθ Y ∗jm(φ, θ)
[
∂θ(sin θE

(out)
θ ) + ∂φE

(out)
φ

]
, (34b)

which might be useful for computational purposes.
We conclude this section with the remark concerning the effect of translation:

{Einc(r),Hinc(r)} → {Einc(r− rp),Hinc(r− rp)} (35)

on the far-field angular distribution (26). Note that, under the action of transformation (35), the
focal plane is displaced from its initial position by the vector rp. From Eqs. (21) and (26), it
follows that, for the far-field distribution (26), translation results in a phase shift:

E
(inc)
out (r̂)→ E

(inc)
out (r̂, rp) = E

(inc)
out (r̂) exp[−ik(rp · r̂)]. (36)

3.1. Poynting vector, Maxwell’s stress tensor and optical force

From Eqs. (24)-(29), it is not difficult to obtain the far-field expression for the time-
averaged Poynting vector of the incident wave Sinc = c/(8π) Re(Einc ×H ∗inc):

Sinc(ρ, r̂) ∼ S
(∞)
inc (ρ, r̂) = ρ−2

{
S
(inc)
in (r̂) + S

(inc)
out (r̂)

}
, (37)

S
(inc)
in (r̂) = −S(inc)

out (−r̂), µ/nS
(inc)
out (r̂) = c/(8π) |E(inc)

out (r̂)|2 r̂, (38)

where |E(inc)
out (r̂)|2 = (E

(inc)
out (r̂) · [E(inc)

out (r̂)] ∗). From this expression, it immediately follows
that the flux of the Poynting vector for the outgoing wave, S(inc)

out (r̂), through a sphere Sf of
sufficiently large radius, Rf , is exactly balanced by the flux of Poynting vector of the incoming
wave, S(inc)

in (r̂).
For the total optical field, which is a sum of the incident and scattered wavefields, the

electric and magnetic fields in the far-field region can also be separated into incoming and the
outgoing portions as follows:

Etot = Einc + Esca ∼ E
(∞)
tot =

1

ρ

[
exp(iρ)Eout(r̂) + exp(−iρ)Ein(r̂)

]
, (39)

Htot = Hinc +Hsca ∼ H
(∞)
tot =

1

ρ

[
exp(iρ)Hout(r̂) + exp(−iρ)Hin(r̂)

]
, (40)

µ/nHout(r̂) = r̂× Eout(r̂), µ/nHin(r̂) = −r̂× Ein(r̂), (41)

Eout(r̂) = E
(inc)
out (r̂) + E

(sca)
out (r̂), Ein(r̂) = −E(inc)

out (−r̂), (42)
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where, similar to the case of the incident wave (32), the far-field angular distribution of the
scattered wave, E(sca)

out (r̂), is determined by the expansion in vector spherical harmonics:

E
(sca)
out (r̂) =

∑
jm

(−i)j+1
[
α
(sca)
jm Y

(m)
jm (r̂) + iβ

(sca)
jm Y

(e)
jm(r̂)

]
. (43)

We can now generalize the Poynting vector expression (37) to the case of the total wavefield
given in Eqs. (39)–(41):

µ/nS
(∞)
tot (ρ, r̂) =

c

8πρ2

{
|Eout(r̂)|2 − |Ein(r̂)|2

}
r̂, (44)

and use the relations (42) to evaluate the flux of the Poynting vector (44) through the far-field
sphere Sf of the radius Rf . The result can be written in the following well-known form:

�

Sf

(S
(∞)
tot · ds) = R2

f〈(S
(∞)
tot (kRf , r̂) · r̂)〉r̂ ≡ −Wabs = Wsca −Wext, (45)

Wsca =
cn

8πµk2
〈|E(sca)

out (r̂)|2〉r̂, Wext = −
cn

4πµk2
Re〈(E(sca)

out (r̂) · [E(inc)
out (r̂)] ∗)〉r̂, (46)

where Wsca is the energy scattering rate (the rate at which the scattered energy crosses the
sphere in an outward direction), Wabs is the energy absorption rate and Wext = Wsca +Wabs

is the extinction rate. When the scatterer and the surrounding medium are both non-absorbing,
the energy absorption rate vanishes, Wabs = 0, and Eq. (45) yields unitarity relations for the
T-matrix [4]. In our spherically symmetric case, these are: |2T 11

j + 1| = |2T 22
j + 1| = 1.

The far-field angular distributions, E
(sca)
out (r̂) and E

(inc)
out (r̂), also determine the time-

averaged optical force, F, acting upon the particle. This force can be expressed in terms of the
time-average of Maxwell’s stress tensor TM :

TM =
1

8π
Re{εE⊗ E∗ + µH⊗H∗ − I3(ε|E|2 + µ|H|2)/2}, (47)

where I3 is the 3× 3 identity matrix, as follows:

F =

�

Sf

(T
(∞)
M · ds), (48)

where T
(∞)
M is the Maxwell stress tensor (47) in the far-field region. Substituting Eqs. (39)–(41)

into the stress tensor (47) gives the following expression for the dot product:

(T
(∞)
M · r̂) = − ε

8πρ2

{
|Eout(r̂)|2 + |Ein(r̂)|2

}
r̂, (49)

that enter the integrand on the right-hand side of Eq. (48). The final result for the optical force
reads:

F(rp) = −
ε

8πk2

{
〈r̂|E(sca)

out (r̂, rp)|2〉r̂ + 2〈r̂Re(E(sca)
out (r̂, rp) · [E(inc)

out (r̂, rp)]
∗)〉r̂
}
, (50)

where we have indicated that the net force exerted on the particle depends on the displacement
vector rp describing position of the scatterer with respect to the focal plane.
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3.2. Remodelled Laguerre–Gaussian beams

In the paraxial approximation, the beams are described in terms of scalar fields of the
form: u(r) exp(ikz), where u(r) is a solution of the paraxial Helmholtz equation:

[∇2
⊥ + 2ik∂z]u = 0, ∇2

⊥ = ∂2x + ∂2y . (51)

For LG beams, the solution can be conveniently written in the cylindrical coordinate system,
(r⊥, φ, z), as follows

unm(r⊥, φ, z) = |σ|−1ψnm(
√
2r⊥/w) exp{−r2⊥/(w2

0σ) + imφ− iγnm}, (52a)

σ ≡ σ(z) = 1 + iz/zR, w ≡ w(z) = w0|σ|, (52b)

γnm ≡ γnm(z) = (2n+m+ 1) arctan(z/zR), ψnm(x) = x|m|L|m|n (x2), (52c)

where Lmn is the generalized Laguerre polynomial given by [49]:

Lmn (x) = (n!)−1x−m exp(x) ∂nx [x
n+m exp(−x)], (53)

where n (m) is the radial (azimuthal) mode number; w0 is the initial transverse Gaussian
half-width (the beam diameter at waist) zR = kw2

0/2 = [2kf 2]−1 is the Rayleigh range and
f = [kw0]

−1 is the focusing parameter.
The problem studied in Refs. [27,29,30] deals with the exact propagation of the optical

field in the half-space, z > 0, when its transverse components at the initial (source) plane,
z = 0, are known. In Ref. [29], the results describing asymptotic behavior of the linearly
polarized field:

E(r⊥, φ, 0) = unm(r⊥, φ, 0) x̂ = ψnm(
√
2r⊥/w0) exp{−r2⊥/w2

0 + imφ} x̂, (54)

were derived using the angular spectrum representation (Debye integrals) and comply with
both results of rigorous mathematical analysis performed in Ref. [50] and those obtained using
the vectorial Rayleigh-Sommerfeld integrals [27, 30]. The resulting expression for the far-field
angular distribution can be written in the following form:

E
(LG)
out (φ, θ) = Enm(f

−1 sin θ/
√
2) exp(imφ)eout, (55a)

eout = cosφ eθ(r̂)− cos θ sinφ eφ(r̂) = cos θ x̂− sin θ cosφ ẑ, (55b)

Enm(x) =
xm

i2n+m+12f 2
Lmn (x

2) exp(−x2/2). (55c)

We can now combine relations (26) and (21) with the outgoing part of the far-field
distribution (55a) to deduce the expression for the electric field of the remodelled LG beam:

E
(LG)
inc (ρ⊥, φ, ρz) = E(LG)

x (ρ⊥, φ, ρz) x̂+ E(LG)
z (ρ⊥, φ, ρz) ẑ =

i

2π
〈exp [i(ρ⊥ sin θk cos(φ− φk) + ρz cos θk)] E

(LG)
out (k̂)〉k̂, (56)

where ρ⊥ = kr⊥ and ρz = kz.

3.3. Laser beam symmetries

In Sec. 3.1, we have shown that the scattering characteristics such as the cross-sections
and the radiation force can be expressed in terms of the far-field angular distributions that can
be regarded as vector fields on a sphere. Under the action of the orthogonal transformation M :
r̂ 7→ r̂′ =M r̂, such fields transform as follows:

Eout(r̂) 7→ E ′out =MEout(M
−1r̂). (57)
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From Eqs. (21a) and (50), we derive the following relations:

Einc(r) 7→ E ′inc =MEinc(M
−1r), F[Eout] 7→ F[E ′out] =MF[Eout], (58)

which define transformations of the incident wave and the optical force.
The symmetry transformation Ms for the far-field angular distribution of the incident

wave may generally be defined through the symmetry relation:

MsE
(inc)
out (M−1

s r̂) = UsE
(inc)
out (r̂), (59)

where Us is the matrix of a unitary transformation. At |rp| 6= 0, we can use Eq. (36) combined
with the orthogonality relation: (r̂ ·rp) = (M−1

s r̂ ·M−1
s rp) to recast the symmetry condition (59)

in the form:

UsE
(inc)
out (r̂, rp) =MsE

(inc)
out (M−1

s r̂,M−1
s rp). (60)

As a direct consequence of the generalized symmetry relation (60) for the optical force, we
have:

F(rp) =MsF(M
−1
s rp), K(rp) =MsK(M−1

s rp)M
−1
s , (61)

where the elements of the stiffness (force) matrix K(rp) are given by:

Kij(rp) = ∂jFi(rp). (62)

At equilibria, the force vanishes (F(req) = 0) and the stiffness matrix, Keq = K(req), is known
to govern the regime of linearized particle dynamics [51].

For the LG beams with the angular distribution (55a), it can easily be verified if the
direction of propagation (the z axis) is the axis of twofold rotational symmetry C2 with C2 :
φ 7→ φ+ π and C2 = diag(−1,−1, 1). From Eq. (55a), we have:

C2E
(LG)
out (C2r̂) = C2E

(LG)
out (φ+ π, θ) = (−1)m+1E

(LG)
out (r̂). (63)

When rd ‖ ẑ and C2rd = rd, equation (61) for the twofold symmetry implies that the
optical force is directed along the symmetry axis, F ‖ ẑ, and the stiffness matrix is of the form:

K =

Kxx Kxy 0
Kyx Kyy 0
0 0 Kzz

 . (64)

Since C2Y
(e,m)
jm (C2r̂) = (−1)mY(e,m)

jm (r̂), for C2 symmetric LG beams, the azimuthal numbers
of nonvanishing beam shape coefficients are of the same parity (all m are either odd or even).

4. Near-field nanostructures

In this section, we present the results of numerical computations for the light scattering
problem for the case where the incident wave is represented by the remodelled LG beams (56)
with the vanishing radial mode number n = 0 and the nonzero azimuthal number, m = mLG ≥
0. Such beams are also known as purely azimuthal LG beams [52].

In agreement with our symmetry analysis, substituting the far-field distribution (55) into
Eq. (34) gives the beam shape coefficients of these beams in the following form:

α
(inc)
jm = α

(+)
j,mLG

δm,mLG+1 + α
(−)
j,mLG

δm,mLG−1, (65a)

β
(inc)
jm = β

(+)
j,mLG

δm,mLG+1 + β
(−)
j,mLG

δm,mLG−1. (65b)

Then, the coefficients of expansions (2) describing scattered wave and electromagnetic field
inside the scatterer can be evaluated from formulas (14)–(17).
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FIG. 1. Near-field intensity distributions of the total wavefield in (a) the x − z
plane and (b) the y − z plane for the LG beam with mLG = 0, f = 0.05 and
|rp| = 0. The parameters are: Rp = 1.5λ is the scatterer radius and np = 1.3
(nmed = 1.0) is the refractive index inside (outside) the particle.

4.1. Photonic nanojets

For spherical particles illuminated by plane waves, the formation of photonic nanojets
and their structure was previously discussed in Refs. [53–55]. Plane waves can be regarded as
Gaussian beams with n = mLG = 0 and sufficiently small focusing parameter, f � 1, which is
defined after Eq. (53) through the ratio of wavelength, λ, and the beam diameter at waist, w0,
f = (2π)−1λ/w0. This limiting case is illustrated in Fig. 1 which shows the near-field intensity
distributions for the total light wavefield in both the x − z and the y − z planes computed at
mLG = 0 and f = 0.05 for the spherical particle of the radius Rp = 1.5λ with the refractive
index np = 1.33 (water) located in air (nm = 1).

It can be seen that the distributions are characterized by the presence of elongated
focusing zones formed near the shadow surface of the scatterer. The transverse sizes of these
zones are smaller than the wavelength of incident light, whereas their longitudinal size in the
direction of incidence, which is along the z axis from top to bottom, is relatively large. Such
a jetlike light structure is typical for the photonic nanojets. The characteristic length and width
of nanojets along with the peak intensity are known to strongly depend on a number of factors,
such as the scatterer size Rp, the particle absorption coefficient and the optical contrast ratio
np/nm. For microspheres, the results of a comprehensive numerical analysis including the case
of shell particles are summarized in a recent paper [55].

The effects of non-plane incident waves, such as laser beams on the structure of photonic
nanojets, are much less studied. Some theoretical results for tightly focused Gaussian beams are
reported in Ref. [56] and the case of Bessel-Gauss beams was studied experimentally in [57].

For the LG beams, we begin with the effects of the azimuthal mode number and describe
what happens to the near-field structure shown in Fig. 1 when the azimuthal number takes the
smallest nonzero value, mLG = 1. The latter represents the simplest case of an optical vortex
beam in which, owing to the presence of phase singularity, the intensity of incident light at the
beam axis (the z axis) vanishes (see Fig. 2(a)). From Fig. 2, it can be seen that, even though
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FIG. 2. Near-field intensity distribution in the x − z plane of (a) the incident
wave beam and (b) the total wavefield for the LG beam with mLG = 1, f = 0.1
and |rp| = 0. Other parameters are described in the caption of Fig. 1.

FIG. 3. Near-field intensity distribution in the x−z plane of (a) the incident wave
beam and (b) the total wave field for the LG beam with mLG = 2, f = 0.08 and
|rp| = 0.

the bulk part of the scatterer is in the low intensity region surrounding the optical vortex, the
scattering process is efficient enough to produce scattered waves that result in the formation
of a pronounced jetlike photonic flux, emerging from the surface of the particle’s shadow (see
Fig. 2(b)).

A comparison between Fig. 2(b) and Fig. 1(a) shows that the three-peak structure of
the photonic jet formed with Mie scattering of the optical vortex LG beam with mLG = 1
significantly differs from the well-known shape of the nanojet at mLG = 0. Interestingly,
similar to the case of Gaussian beams with mLG = 0, the focusing zones at mLG = 1 involve
the beam axis where one of the light intensity peaks is located.

From Fig. 2, it can be seen that, even though the bulk part of the scatterer is in the
low intensity region surrounding the optical vortex, the scattering process is efficient enough
to produce scattered waves that result in the formation of a pronounced jetlike photonic flux
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emerging from the surface of the particle’s shadow (see Fig. 2(b)). Figure 3 demonstrates that,
for the weakly focused LG beam with f = 0.08, this effect can be even more pronounced at
mLG = 2.

FIG. 4. Near-field intensity distribution in the x−z plane of (a) the incident wave
beam and (b) the total wave field for the LG beam with mLG = 2, f = 0.25 and
rp = (0, 0, 3λ).

The results for tightly focused LG beams with mLG = 2 and f = 0.25 are shown in
Fig. 4. When the displacement vector, rp defined in Eqs. (35) vanishes, the focal (waist) plane
of the incident LG beam is z = 0 and the bulk part of the four-peak structure of the focusing
zones is localized inside of the particles. For rp = (0, 0, 3λ), the focal plane, z = 3λ, is located
behind the particle (see Fig. 4(a)). From Fig. 4(b), it is seen that four peaks of light intensity
now develop in the immediate vicinity of the scatterer surface.

FIG. 5. Near-field intensity distribution in the x − z plane of (a) the incident
wave beam and (b) the total wave field for the LG beam with mLG = 2, f = 0.2
and rp = (0, 0, λ). The small scatterer (Rp = 0.5λ) is made of the negative index
(left-handed) metamaterial with εp = µp = −1.

What all the wavefields depicted in Figs. 2(b)–4(b) have in common is that, in contrast
to the incident optical vortex beams with mLG = 1 and mLG = 2, the light intensity at the
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incident beam axis (the z axis) clearly differs from zero. In other words, in the near-field
region, the optical vortex with 0 < |mLG| ≤ 2 has been destroyed by Mie scattering. As it will
be explained in the subsequent section this is no longer the case at mLG ≥ 3.

In the conclusion of this section, we briefly discuss the structure of the nanojets for
scatterers made of the negative index (left-handed or double negative) metamaterial (such ma-
terials are reviewed in a number of books and papers [58–61]). This is case where Re εp and
Reµp are both negative. For the limiting case of a nonabsorbing Veselago medium [62] with
εp = µp = −1, Fig. 5 shows a rather unusual nanojet structure formed in the illuminated part of
the small particle as opposed to the structures shown in Figs. 1–4. An important point is that,
in real metamaterials, the effects of absorption cannot be neglected. In particular, these effects
may prevent formation of jetlike structures near metallic particles and this is why, to the best
of our knowledge, the current literature on photonic nanojets has been focused exclusively on
the case of dielectric scattering. Figure 6 demonstrates that a jetlike structure may form near
the shadow surface of a metallic particle illuminated by a vortex laser beam (the LG beam with
mLG = 1). A comprehensive study of absorption effects in metallic and metamaterial scatterers
is well beyond the scope of this paper and the corresponding results will be published elsewhere.

FIG. 6. Near-field intensity distribution in the x − z plane of (a) the incident
wave beam and (b) the total wave field for the LG beam with mLG = 1, f = 0.2
and rp = (0, 0, λ). The metallic scatterer (Rp = 0.5λ) is made of gold with
εp ≈ −22 + 1.8i (λ ≈ 800 nm).

4.2. Optical vortices

In this section, we consider optical vortices and their near-field structure. The optical
vortices are known to represent phase singularities of complex-valued scalar waves which are
zeros of the wavefield ψ = |ψ| exp(iχ) where its phase χ is undefined. A phase singularity is
characterized by the topological vortex charge mV , defined as the closed loop contour integral
of the wave phase χ modulo 2π:

mV =
1

2π

�

L

dχ, (66)

where L is the closed path around the singularity.
Optical vortices associated with the individual components of electric field will be of

our primary concern. More specifically, we shall examine the optical vortex structure of the
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components Ez and Ex in the planes z = z0 parallel to the x− y plane. Since, in such planes,
circles naturally play the role of closed loops, the starting point of our analysis is the electric
field vector, expressed as a function of the azimuthal angle φ in the following form:

E =
2∑

µ=−2

Eµ exp[i(mLG + µ)φ], (67)

E±2 ‖ x̂∓ iŷ, E±1 ‖ ẑ, E0 ⊥ ẑ. (68)

This formula gives the φ dependence of electric field expansion (2a), in which the coefficients
are of the form given by Eq. (65). An immediate consequence of Eq. (67) is that Eµ can be
different from zero on the z axis, Eµ(0, 0, z) 6= 0, only if mLG + µ = 0.

From Eq. (68), at |mLG| = 1, the electric field non-vanishing at the beam axis is
linearly polarized along the z axis, whereas it is circular polarized at |mLG| = 2. The intensity
distributions shown in Figs 1– 4 clearly indicate that the z axis is not entirely in the dark region
provided that 0 ≤ mLG < 3.

At |mLG| ≥ 3 and |µ| ≤ 2, a sum mLG +µ cannot be equal to zero and the beam axis is
always a nodal line for the components of electric field. For two-dimensional (2D) electric field
distributions in planes normal to the z axis, it implies that there is an optical vortex located at
the origin.

FIG. 7. Near-field phase maps of the electric field components Ex (a,b,c) and Ez
(d,e,f) in the planes z = 0 (a,b,d,e) and z = Rp = 1.5λ (c,f) for the LG beam with
mLG = 1 and f = 0.1. (a) [(d)] Phase map of the electric field component E(LG)

x

[E(LG)
z ] of the incident wave beam in the x− y plane (z = 0). (b,c) [(e,f)] Phase

maps for the electric field component Ex [Ez] of the total light wavefield in the
planes z = 0 and z = Rp, respectively.
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Now we return to the optical vortex structure for the components Ez and Ex. The φ
dependence of Ez can be written in the following form:

exp[−imLG φ]Ez = exp[−imLG φ+ iχz]|Ez| = E
(z)
+1 exp[iφ] + E

(z)
−1 exp[−iφ] =

exp[iψ
(z)
+ ]
{
|E(z)

+1 | exp[i(φ+ ψ
(z)
− )] + |E(z)

−1 | exp[−i(φ+ ψ
(z)
− )]

}
, (69)

where E(z)
±1 =

(
E±1 · ẑ

)
, 2ψ(z)

± = arg(E
(z)
+1)± arg(E

(z)
−1) and χz is the phase of Ez.

The complex plane formula (69) describes an ellipse parametrized by the azimuthal
angle φ. It is centered at the origin with the major (minor) semiaxis of the length E

(z)
+ (R)

(|E(z)
− (R)|), where E(z)

± (R) = |E(z)
+1(R)| ± |E

(z)
−1(R)| R is the radius of circle CR in the plane of

observation, z = z0. Then the closed loop contour integral of the wave phase χz is:

mz =
1

2π

�

CR

dχz = mLG + µz(R), (70a)

µz(R) = sign(E
(z)
− (R)) = sign(|E(z)

+1(R)| − |E
(z)
−1(R)|). (70b)

FIG. 8. Near-field intensity maps of the electric field components |Ex|2 (a,b,c)
and |Ez|2 (d,e,f) in the planes z = 0 (a,b,d,e) and z = Rp = 1.5λ (c,f) for the
LG beam with mLG = 1 and f = 0.1. (a) [(d)] Intensity distribution for the x
[z] component, |E(LG)

x |2 [|E(LG)
z |2], of the incident wave beam in the x− y plane

(z = 0). (b,c) [(e,f)] Intensity distributions for the x [z] component of electric
field of the total light wavefield in the planes z = 0 and z = Rp, respectively.

From Eq. (70), the net topological charge of vortices encircled by CR can be either
mLG + 1 or mLG − 1. At |E(z)

+1(R)| = |E
(z)
−1(R)|, µz(R) is undefined. This is the special case

when |Ez| = 0 at cos(φ + ψ
(z)
− ) = 0 and the circle contains a pair of symmetrically located

vortices. Each of these vortices carries a charge of the magnitude equal to unity. Generally,
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the vortices are of the same sign, which is determined by the change of µz(R) as the radius R
passes a critical value. When µz(R) changes from +1 (−1) to −1 (+1) two vortices of the
charge −1 (+1) intersect the boundary and move into the interior part of the circle.

The case of the x component of the electric field, Ex, can be analyzed along similar
lines. From Eq. (67), we deduce the φ dependence of Ex in the form:

exp[−imLG φ+ iχx]|Ex| − E(x)
0 = E

(x)
+2 exp[2iφ] + E

(x)
−2 exp[−2iφ] =

exp[iψ
(x)
+ ]
{
|E(x)

+2 | exp[i(2φ+ ψ
(x)
− )] + |E(x)

−2 | exp[−i(2φ+ ψ
(x)
− )]

}
, (71)

where E(x)
±2, 0 =

(
E±2, 0 · x̂

)
, 2ψ(x)

± = arg(E
(x)
+2 )±arg(E

(x)
−2 ) and χx is the phase of Ex. The center

of the ellipse described by Eq. (71) is generally displaced from the origin and is determined
by E

(x)
0 . The length of its major (minor) semiaxis is E(x)

+ (R) (|E(x)
− (R)|), where E(x)

± (R) =

|E(x)
+2 (R)| ± |E

(x)
−2 (R)|.

The closed loop contour integral of the wave phase χx is:

mx =
1

2π

�

CR

dχx = mLG + µx(R), µx(R) ∈ {−2, 0, 2}. (72)

When the origin is enclosed by the ellipse (71), similar to Eq. (70b), we have the
relation:

µx(R) = 2 sign(E
(x)
− (R)) = 2 sign(|E(x)

+2 (R)| − |E
(x)
−2 (R)|). (73)

In the opposite case, when the origin is outside the area encircled by the ellipse, µx(R) is zero.
The latter is the case for the near-field phase maps shown in Figs. 7(a)–(c) that represent the
2D distributions of χx in the x− y plane for the LG beam with mLG = 1 (see Fig. 2).

As is evident from Figs. 7(a)–(c) (see also the intensity maps in Figs. 8(a)–(c)), in these
distributions, the only vortex is positioned at the center and possesses the charge mx = mLG =
+1. As opposed to the case with mLG = 2 discussed in Ref. [38], at mLG = 1, the central
vortex of the x component, Ex, is structurally stable and cannot be destroyed.

The near-field phase maps for χz are presented in Figs. 7(d)–(f). Figure 7(d) shows the
2D map for the incident optical vortex LG beam with mLG = 1 in the focal plane z = 0. The
corresponding intensity map is depicted in Fig. 8(d). It is seen that there are no vortices at the
center, so that, at sufficiently small R, mz = 0 and µz = −1. In addition, there is a pair of the
symmetrically-arranged vortices of the charge +1 inside the particle. So, when the radius R is
large enough for the circle to enclose the vortices, the total charge is mz = mLG + 1 = 2 and
µz = 1.

For the total wavefield at z = 0, the phase and intensity maps are given in Fig. 7(e)
and Fig. 8(e), respectively. It can be seen that the vortex pattern is complicated by interference
between the incident and the scattered waves. Referring to Fig. 7(e), there are two additional
pairs of vortices whose charges are opposite in sign. The negatively charged vortices (the charge
is −1) are located inside the particle, whereas the positively charged ones (the charge is +1) are
formed on the surface of the particle. A similar structure is discernible from Figs. 7(f) and 8(f),
representing the results for the plane tangent to the particle surface z = Rp.

5. Conclusions

In this paper, we have used a T–matrix approach in the form described in Refs. [10,38] to
study the light scattering problem for optically isotropic spherical scatterers illuminated with LG
beams that represent optical vortex laser beams. Our approach uses the remodelling procedure
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in which the far-field matching method is combined with the results for nonparaxial propagation
of LG beams. Scattering of such beams is thus described in terms of the far-field angular
distributions, E(inc)

out and E
(sca)
out , that determine the outgoing parts of the incident and scattered

waves. The far-field distributions play a central role in the method giving, in particular, the
differential cross-sections and the optical (radiation) force acting upon the Mie scatterer.

The analytical results are employed to perform numerical analysis of the optical field in
the near-field region. In order to examine the effects of incident beam spatial structure on the
light wavefield near the scatterer, we have computed a number of the 2D near-field intensity
and phase distributions for purely azimuthal LG beams. In this case, a LG beam possesses
the vanishing radial mode number and carries the optical vortex with the topological charge
characterized by the azimuthal number mLG.

The 2D near-field intensity distributions computed for the plane-wave limiting case in
which the incident wave is a Gaussian beam (mLG = 0) with small focusing parameter f
(2πf = λ/w0 < 1) reveal the well-known structure of photonic nanojets (see Fig. 1). Figures 2–
4 represent the results for the LG beams with 1 ≤ mLG ≤ 2 and show that the morphology of
photonic jets formed at mLG 6= 0 significantly differs from the well-known shape of nanojet at
mLG = 0. The effect that a jetlike photonic flux emerging from the particle shadow surface can
be formed even if the bulk part of the scatterer is in the low intensity region is illlustrated in
Figs. 2(b)–3(b)). In contrast, as can be seen from Fig. 5, the jetlike flux near negative index
metamaterial Mie scatterers may emerge from the illuminated part of the particle surface.

The form of the beam shape coefficients (65) is dictated by the twofold rotational
symmetry of the LG beam (see Sec. 3.3) and underlies general formula (67) giving the electric
field vector expressed as a function of the azimuthal angle φ. The latter is at the heart of our
analysis of optical vortices associated with the electric field components.

An important consequence of Eq. (67) is that, at sufficiently large azimuthal numbers,
|mLG| ≥ 3, light scattering of LG beams takes place without destroying the optical vortex
located on the beam axis. By contrast, at |mLG| < 3, the intensity of scattered wavefield does
not vanish on the beam axis so that, in the near-field region, light scattering has a destructive
effect on the optical vortex (see Figs. 2–4).

Using analytical expressions (69) and (71), we have described the geometry of optical
vortices for the components Ez and Ex in the planes z = z0 normal to the beam axis (the
z axis). It was found that, except for the central vortex, the topological charge of off-center
vortices generally equals unity in magnitude. They are organized into pairs of symmetrically-
arranged and equally-charged vortices. These pairs lie on concentric circles and their vortex
charge alternate in sign with the circle radius (see, e.g., Fig. 7(f)).

The phase maps of Ex shown in Figs. 7(a)-(e) (the corresponding square amplitude
distributions are presented in Figs. 8(a)-(e)) are computed for the LG beam with mLG = 1. The
central vortex having azimuthal number mLG = 1 was found to be the only vortex for both
the incident beam and the total wavefield. Formula (69) implies that the z axis is a nodal line
for the x component of the electric field, Ex, and the central vortex is structurally stable at
mLG = 1. When mLG = 2, a similar result applies to the z component [38].

In the phase maps for Ez, depicted in Fig. 7(d)-(f), there are no vortices at the origin. For
the incident wave, there is a pair of equally charged vortices (see Fig. 7(d)). As is seen from
Figs. 7(e)-(f), interference between the incident and the scattered waves produces additional
pairs of symmetrically arranged vortices.
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A common approach to establishing long-distance synchronization links in quantum communication (QC) systems

is based on using optical signals transmitted in cables, where they decay and are distorted. It is necessary to

evaluate the transformation of the signal parameters during propagation and their influence on the QC systems.

We investigate the temperature dependence of the synchronization signal phase of a subcarrier wave quantum

communication system (SCWQC) in optical fiber cables. A temperature model was created in order to determine

the signal phase delay in the cable. We estimate the influence of daily temperature fluctuations on the phase

delay in ground- and air-based cables. For systems operating with ground-based cables, they do not have any

significant impact on the synchronization of the signal phase. However, for systems operating through air-based

cables, phase adjustment is required every 158 ms for stable operation. This allowed us to optimize the parameters

for a calibration procedure of a previously-developed SCWQC system, increasing the overall sifted key generation

rate.
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1. Introduction

During the last two decades, significant progress has been made in the development of
experimental quantum communication systems (QC) [1, 2] which could have potential future
use in protecting confidential data by quantum key distribution technique (QKD) [1]. This has
led to increased interest in their integration into telecommunication infrastructure [1, 2]. One of
the promising approaches to QC in optical fibers is subcarrier wave quantum communication
system (SCWQC) [1].

In practical QC, systems several technological challenges still remain, including syn-
chronization of their receiver and transmitter devices by precisely controlling the phase of
high-frequency electrical modulating signals. A common approach to establishing long-distance
synchronization links in QC is based on using optical signals transmitted in a separate chan-
nel [3, 4]. However, these synchronization signals decay and are distorted during transmission
through the fibers, therefore it is necessary to evaluate transformation of their parameters, its
influence on the QC system operation, and to develop methods of compensating for the negative
effects.

This paper investigates the temperature dependence of the synchronization signal in
optical fiber in ground- and air-based cables. A temperature model is created in order to
determine the signal phase delay in the cable. We estimate the influence of daily temperature
fluctuations on the phase delay in ground- and air-based cables. Finally, we apply the calculation
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results to a synchronization system of a previously developed experimental SCWQC device [5–
8] in order to optimize its sifted key [1] generation rate.

2. Synchronization system

2.1. Subcarrier wave quantum communication system clock synchronization problem

The main parameter that determines the characteristics of QC and QKD systems is
QBER. It is defined as the ratio between the erroneous bits and the total number of received
bits. QBER is the main factor that limits the maximal possible distance of secure quantum
key distribution [1]. For the widely-used BB84 protocol family, the limiting QBER value is
about 11 % [1].

Two main factors contribute to the QBER value: the signal visibility in the quantum
channel and the dark count of the detector:

QBER =
1− V

2
+

p

4µη · 10(−αL−β)/10 ,

where V is interference pattern visibility, β represents the losses in the receiver module, p is
the dark count probability per bit, α is the optical fiber attenuation coefficient at the central
wavelength of the photon source, L is the optical fiber length and η is the detection efficiency.
Visibility value represents the probability of photon out-of-phase detection and therefore depends
on the quality of optical phase matching of the transmitter and receiver phase modulators used
for encoding qubits. Clearly, it is always beneficial to maximize the quantum channel visibility.
In modern practical QC systems [3, 4, 6–8] the achieved visibility value is usually around 98 –
99 %. As is shown on Fig. 1, such visibility values in SCWQC system are correspond to
maximum modulating signal phase mismatch ∆ϕ = 0.043.

FIG. 1. Signal phase mismatch dependence of visibility

2.2. Subcarrier wave quantum communication system clock synchronization

Since phase matching between the transmitter (Alice) and receiver (Bob) is defined by
clock signals from respective voltage controlled oscillators (VCO), preservation of the optical
synchronization signal phase appears crucial to achieving high quantum signal visibility. The
uncontrollable synchronization signal phase shift appears under influence of different external
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FIG. 2. Block diagram of the synchronization subsystem in SCWQC system

effects. One of them is daily temperature fluctuation that affects the refractive index of the
fiber, thus inducing optical delays. For the SCWQC system described in [4, 5], this problem is
solved by the calibration procedure described below.

The synchronization pulse is sent through a separate optical fiber to avoid its influence
on QBER [3,4]. Synchronization channel laser L generates a sinusoidal signal with a frequency
defined by the VCO that acts as a generator (Fig. 2). This signal is also modulated by the
transmitter logic board (FPGA). After passing through the communication channel optical signal
is recorded at the photodetector (D) in receiver block, where it amplified (AMP) and filtered
in the electric filter (EF). The sinusoidal component flows through the microcontroller (MC)
to the receiver VCO and used to adjust the oscillator frequency. The component inserted by
the transmitter logic is used as the start and reset signal. A subsystem composed of the VCO
and a phase-locked lope device then generates the driving signal of the optical modulator with
frequency Ω. A more detailed description of phase modulating in the system is provided in [6].

As the synchronization subsystem performs two functions, synchronization of transmitter
and receiver generators and transmitting a start/reset signal, two main problems caused by signal
phase difference appear. First, the generators in the transmitter and receiver modules have to
be precisely phase-locked, so that the phase delay of the synchronization signal should not
exceed ∆ϕ. Second, the delay between the synchronization and quantum signals in different
fibers should not exceed 10 % of the gate interval for correct system operation. Thus, for the
described system with 100 MHz clock rate, the limiting delay value is 1 ns.

In order to solve these problems in the SCWQC system, a novel calibration procedure
was developed. After a certain time interval of quantum bit transmission (tqc), the procedure
switches the system into calibration mode (time interval tcal), during the course of which it resets
the gate starting time and redefines the optical phase values induced by different modulator
driving voltages (“modulation tables”) in Alice and Bob units. During SCWQC experiments
in optical fibers, the values of tqc and tcal were chosen to be 50 ms and 10 ms, respectively.
Therefore, the effective sifted key generation rate is reduced by approximately 15 %.

In the following sections, we find the temperature dependence of synchronization signal
phase. Then, we develop a temperature model of optical fiber cables, which will be employed
during the scheduled SCWQC experiments, and calculate the temperature-induced phase delay.
This allows us to optimize the value of tcal and therefore the sifted key rate in practical SCWQC
systems.

2.3. Phase temperature dependence

To determine the maximum interval between two following calibration procedures, we
need to know the temporal delay ∆t of the signal, which corresponds to the maximum tolerated
phase delay, ∆ϕ. The ∆t value depends on the cable length L and refractive index changes in
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the fiber ∆n:

∆t =
L∆n

c
. (1)

In turn, the fiber’s refractive index is linearly dependent upon the temperature T and two
constants, representing the change of n due to temperature (T-component) and bending (R-
component) [9]:

∆n =

[(
dn

dT

)
T

+

(
dn

dT

)
R

]
∆T .

As shown in [9], for the Corning SMF-28 fiber widely used in telecommunication cables, these
coefficients are: (

dn

dT

)
T

= 6.8 · 10−5 ◦C−1,(
dn

dT

)
R

= 0.8 · 10−5 ◦C−1.

We chose the optical cable length L = 100 km, since it is a typical distance for metropolitan
area local networks. For this L value, the signal delay is:

∆t = 2.53 · 10−8∆T [s].

The relation between the phase and time delays of a signal with frequency Ω is given by:

∆t = ∆ϕ/Ω.

The Ω value is typically several gigahertz for SCWQC systems [4, 5]; we used a value
of 4 GHz in our calculations.

It can be seen that the phase delay is in direct ratio with the temperature T of the fiber
core. A temperature model of the cable was therefore created in order to determine it.

3. Process modeling

3.1. Cable temperature model

To estimate the temperature fluctuations of the fiber optical cable core we have de-
veloped the following temperature model. We solve the heat equation and choose appropriate
boundary conditions for the two cases: the air- and ground-based cables.

The two-dimensional heat equation for the cable is:

cρ
∂T

∂t
=

∂

∂x

(
λ
∂T

∂x

)
+

∂

∂y

(
λ
∂T

∂y

)
, (2)

where λ is thermal conductivity, ρ represents density and is heat capacity. We write the air
temperature in the form Ta(t) = T a + δTa cos (ωt), where T a is the average daily temperature,
δTa is the temperature amplitude.

The first boundary condition corresponds to the cable in the air:

λ
∂T

∂r

∣∣∣∣
r=R

= α(Ta(t)− T |r=R), (3)

where α is the coefficient of convective heat exchange, r and R are the radial coordinate and
radius of the cable.

The temperature Tg (t) in the ground at depth z has reduced amplitude and phase
shift [10].The second boundary condition corresponds to the cable located in the ground:
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TABLE 1. Cable element parameters

Element R, mm Thermal diffusivity, m2/s, ·10−6

Outer jacket 3 0.11
Strength member 2.3 13.3/0.09*
Coating 2 0.11
Water blocking material 1.35 0.174
Optical fiber 0.45 1.1
Central member 0.45 0.15
*for the air /ground cables

T |r=R = Tg(t) ≡ T a + δTa exp

(
−z
√

ω

2a

)
cos

(
ωt− z

√
ω

2a

)
, (4)

where a is the thermal diffusivity of ground.
Figure 3a shows the model of the cable with chosen configuration. The cable consists

of an outer jacket, a strength member, a coating, water blocking material, optical fibers and a
central member.

FIG. 3. a) Cable model with chosen configuration; b) The computational domain model

Let the radius of the cable be R. We then divide the area using a uniform grid consisting
of n + 1 knot (Fig. 3b). We solve the eq. (2) using a difference Crank–Nicolson scheme with
boundary conditions (3–4) with Thomas algorithm for n = 1000. Different elements of the
cable have different thermal diffusivity coefficients, as indicated in Table 1.

3.2. Modeling results and discussion

The main difference between an air-based cable and one lying in the ground is the
lack of steel armor, optional for this type of operation, which is replaced by an aramid yarn.
Therefore in the case of air-based cable, the thermal diffusivity of the strength member will be
lower. In the cable lying underground, the temperature is distributed in the form of a wave,
depending on the depth. In our model, we have chosen a typical ground depth of 1 meter.
With a small-sized cable, even after a while, the temperature and the difference between the
coefficients of thermal diffusivity for different elements were insignificantly affected.
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The initial temperature Ta of the cable is 15 degrees; the initial (mean) environmental
temperature T a is 15 degrees, with δTa = 10 degrees oscillation amplitude over a period
of 24 hours. Temperature fluctuations for the chosen fiber in the cable over 12 hours are shown
on Fig. 4.

FIG. 4. Change of cable temperature during daytime in air (a) and in the ground (b)

As discussed previously, the signal phase delay in the system is in direct ratio with the
temperature of the fiber optic core.

Figure 5 shows the dependence of the synchronization signal temporal delay induced by
cable heating. Eq. (1) allows us to calculate the delay ∆t, which leads to maximum tolerated
phase difference ∆ϕ = 0.043, as 0.0017 ns. According to our model (Fig. 5) for air-based
cables, such ∆t accumulates every 158 ms. Therefore, for SCWQC systems operating in air,
the modulation signal adjustment may be performed every 158 ms instead of every 50 ms, as
was previously implemented. This would allow for longer tqc and about 15 % higher effective
sifted bitrate.

At the same time, for ground-based cables, the temperature-induced signal delay never
reaches the critical value due to the small daily temperature fluctuations at 1 meter depth
underground (Fig. 6). Therefore, the temperature (under normal conditions) does not affect the
course of SCWQC system operation.

FIG. 5. Dependence of the sig-
nal delay time upon cable heat-
ing

FIG. 6. The dependence of the
signal delay time upon the heat-
ing cable at different points in a
24 hour period



Temperature dependence of the optical fiber cable parameters . . . 377

4. Conclusion

Optical signals transmitted in cables for quantum communication systems are trans-
formed during their propagation. In this paper, the temperature dependencies of the synchro-
nization signals in optical fiber cables in the ground and in air were investigated. In order to
determine the signal delay in the cable, a temperature model was created. The influence of daily
temperature fluctuations on the phase delay was estimated for the air- and ground-based cables.
The calculated results can be used to optimize calibration procedures in SCWQC systems.

For systems operating in ground-based cables, daily temperature fluctuations do not
significantly impact the synchronization of the signal phase. However, it has been shown that
for systems operating through air-based cables, phase adjustment is required every 158 ms for
stable operation. This allowed us to optimize the parameters for the calibration procedure of a
previously developed SCWQC system. Therefore, this allowed an increase in the overall sifted
key generation rate.
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Quantum random number generators based on vacuum fluctuations produce truly random numbers that can be used

for applications are requiring a high degree of randomness. A beam splitter with two inputs and two outputs is

normally used in these systems. In this paper, mathematical descriptions were obtained for the use of such beam

splitter and fiber Y-splitter in quantum random number generation systems with homodyne detection. We derived

equations which allowed us to estimate the impact of the scheme parameters’ imperfection upon measurement

results. We also obtained mathematical expressions, demonstrating the equivalence of quantum descriptions for a

Y-splitter and a beam splitter with two inputs.
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1. Introduction

Random numbers can be generated algorithmically, but resulting sequences are pseu-
dorandom and not suitable for applications in which a high degree of randomness is needed,
such as quantum cryptography [1]. These applications necessitate true random number gen-
eration obtained by indeterminate physical processes, including quantum processes. Existing
approaches to quantum random number generation include the use of radiation separation [2],
entangled photon states [3], quantum noise of a laser [4], processes of photon emission and
detection [5]. An alternative approach is quantum random number generators based on quantum
vacuum fluctuations (Fig. 1) [6, 7].

FIG. 1. Quantum random number generation scheme based on vacuum fluctua-
tions: L – laser, BS – beam splitter, D1, D2 – detectors, SA – spectrum analyzer,
PC – computer

This type of quantum random number generator extracts randomness from quantum
noise obtained when balanced detector subtracts signals received from beam splitter outputs. In
these schemes, beam splitters with two inputs and two outputs (Fig. 2a) are normally used. To
the first splitter input, a coherent state is sent from a laser, and to the other input – a vacuum
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state. These two signals are mixed via a beam splitter, then, signals are sent from the beam
splitter outputs to the balanced detector. The subtracted signal is quantum noise, which can
be processed on a PC. Random numbers are obtained as a result of received differential signal
processing. The purpose of this research was the comparison of quantum descriptions of optical
beam splitter and a fiber splitter with one input and two outputs (Fig. 2b). If these quantum
descriptions are equal, it will allow us to use a Y-splitter to implement a quantum random
number generation system based on quantum vacuum fluctuations.

FIG. 2. a) Scheme of a beam splitter with angle θ, where a coherent state is
sent to the 1st spitter input, and to the other input – a vacuum state. b) Optical
Y-splitter. a1, a2, a3 – input signals of the 1st, 2nd and 3rd ports, respectively,
b1, b2, b3 – output signals from the splitter

2. Beam splitter

Beam splitter is a key element for quantum random number generation schemes based
on vacuum fluctuations [6,7]. We consider its impact upon the signal. Mathematical description
of a beam splitter, when a strong laser signal, described by the Poisson distribution, arrives at
one of its inputs and vacuum state arrives at the other, has been derived in the operator form.
In this description, the mean photon number of laser signal α, the angle of beam splitter θ and
quantum efficiencies of detectors γ1 and γ2 were taken into account.
If signals a1 and a2 come to beam splitter inputs, as shown on Fig. 2a, then signals at outputs,
b1 and b2 can be described by formula (1):{

b1 = a1 cos θ − a2 sin θ,

b2 = a1 sin θ + a2 cos θ.
(1)

Laser radiation at the first input is characterized by a Poisson distribution with parameter α
(describing mean photon number), which in operator form is expressed as follows:

|α〉 = eαa
+
1 −α∗a1|0〉, (2)

where a+1 and a1 – photon creation and annihilation operators at first input of beam splitter,
|α〉 – coherent state, |0〉 – vacuum state.

When a coherent state is sent to first splitter input and a vacuum state is sent to the
second splitter input, then the input signal on the beam splitter is expressed as a tensor product:

|α〉|0〉 = eαa
+
1 −α∗a1 |0〉1|0〉2. (3)

If the radiation is characterized by a Poisson distribution with parameter |α〉 that passes through
a beam splitter with angle θ (Fig. 2a), then one of beam splitter outputs is characterized by a
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Poisson distribution with parameter |a cos θ〉, and second is characterized by Poisson distribution
with parameter |a sin θ〉.

In the case of the symmetric beam splitter, we obtain expression, describing signals at
both outputs:

b+1 = b+2 =
1√
2
a+1 . (4)

The differential current after detection can be defined as follows:

∆i = i2 − i1 = γ2b
+
2 b2 − γ1b+1 b1, (5)

where i1, i2 are photocurrents at first and second detectors, γ1, γ2 are quantum efficiencies of
detectors.

For a symmetric beam splitter and detectors with equal quantum efficiencies, the mean
value of the differential current is determined to be zero, and amplitude of the differential cur-
rent deviation is directly proportional to the intensity of incident radiation.

In the case of using an asymmetric beam splitter and detectors with different quantum
efficiencies, the mean value of the differential current is characterized by the following equation:

〈∆i〉 = α2(γ2 sin2 θ − γ1 cos2 θ). (6)

In this case, the amplitude of differential current deviation can be estimated by the following
formula (7):

δi = α
√
γ22 sin2 θ + γ21 cos2 θ. (7)

3. Y-splitter

Using a Y-splitter as a basic element for homodyne detection allows one to obtain the
lower level of determined ambient noise and reduce the size of the device without compromis-
ing the generation rate or degree of randomness for the generated sequences. We consider the
Y-splitter (Fig. 2b) as a system with three inputs and three outputs [8], because input and output
signals can pass through one channel.

The relationship between the input and output signals in a Y-splitter which allows show-
ing the correlation between each pair of signals, can be described by the following expression:b1b2

b3

 =

−
√

1− 2λ2 β β

λ −γ
√

1− β2 − γ2
λ

√
1− β2 − γ2 −γ


a1a2
a3

 , (8)

where λ is the proportionality factor connecting the input signal at the 1st port and output
signals at 2nd and 3rd ports; β is the proportionality factor connecting the input signals at the
2nd or 3rd ports and the output signal at the 1st port; γ is the proportionality factor connecting
the input and output signals of the 2nd port or input and output signals of the 3rd port.

These coefficients are selected in accordance with requirements of the unitary property
for the matrix. The next expressions also arise from unitarity conditions:
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
−
√

1− 2λ2β − λγ + λ
√

1− β2 − γ2 = 0,

−
√

1− 2λ2β + λ
√

1− β2 − γ2 − λγ = 0,

β2 − 2γ
√

1− β2 − γ2 = 0.

(9)

After selection of matrix proportionality factors, it is possible to simplify the matrix form using
the fact that the parameters λ and β can be expressed for this system through the γ:

λ = β =
√

2γ(1− γ). (10)

Then, the original matrix takes form:

 1− 2γ
√

2γ(1− γ)
√

2γ(1− γ)√
2γ(1− γ) −γ 1− γ√
2γ(1− γ) 1− γ −γ

 . (11)

We consider the special case when a signal from 1st input port is distributed only be-

tween ports 2 and 3 without reflection on the 1st port. In this case
√

1− 2λ2 = 0, and λ =
1√
2
,

then by using expressions were obtained above, we can derive the values β =
1√
2

and γ =
1

2
.

If signal a1 is sent to 1st port of Y-splitter, then signals from outputs 2 and 3 can be
described by using matrix with these proportionality factors:

b1b2
b3

 =


0

1√
2

1√
2

1√
2
−1

2

1

2
1√
2

1

2
−1

2


a10

0

 =


0

1√
2
a1

1√
2
a1

 . (12)

Thus,

b+2 = b+3 =
1√
2
a+1 . (13)

Then, we can consider the matrix elements describing the interconnection between signal at 1st
input port of Y-splitter and signals, emanating from 2nd and 3rd ports, thus:

b+2 = b+3 =
1√
2
a+1 . (14)

This expression coincides with signals that were obtained at output ports of symmetric beam
splitter, when the coherent state a1 was sent to the first splitter input, and a vacuum state –
to the other. Thus, as the description for the beam splitter and Y-splitter are equal, we can
use results for beam splitter, obtained earlier, to evaluate work of quantum random generation
systems, based on vacuum fluctuations using the Y-splitter.
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4. Y-splitter with complex parameters

When we use complex parameters to mathematically describe the Y-splitter, then original
system (8) is changing. Relationship between signals at inputs and outputs of Y-splitter is shown
in the following expression:

b1b2
b3

 =


−
√

1− 2|λ|2 β β

λ −γ
√

1− |β|2 − |γ|2

λ

√
1− |β|2 − |γ|2 −γ


a1a2
a3

 . (15)

In the next matrix parameters, λ and β were derived from the original matrix through the
parameter γ = γr + iγi:

2γr − 1
√

2γr(1− γr) + iγi

√
1− γr

2γr

√
2γr(1− γr) + iγi

√
1− γr

2γr√
2γr(1− γr) + i

γi
√

1− γr√
2γr(2γr − 1)

−γr − iγi 1− γr√
2γr(1− γr) + i

γi
√

1− γr√
2γr(2γr − 1)

1− γr −γr − iγi


(16)

We can see, that coefficient γ shows reflection at port 2, when signal a2 is sent to the 2st port
of Y-splitter, and there are no input signals at other ports. Then, we consider when signal a1
is sent to the 1st port of Y-splitter, and there are no input signals at other ports, then signal is
distributed only between output ports 2 and 3, and we can estimate signals for the 2nd and 3rd
ports:

b+2 = b+3 =
√

2(1− γr) exp

(
i

γi
2γr(2γr − 1)

)
a+1 . (17)

These result, with the exception of phase shift, coincides with signals that were obtained at
output ports of symmetric beam splitter, when coherent state a1 was sent to the first splitter
input, and a vacuum state - to the other.

5. Conclusion

In this research, we obtained expressions describing the relationship between beam split-
ter input radiation and differential current. For a symmetric beam splitter and detectors with
equal quantum efficiencies, the mean value of differential current is determined to be zero,
and the amplitude of the differential current deviation is directly proportional to the intensity
of the incident radiation. We also derived equations for an asymmetric beam splitter, allowing
estimation of how the scheme parameters imperfection affect the measurement results.

We obtained mathematical expressions, demonstrating the equivalence for the quantum
description of beam splitter with two inputs and Y-splitter, when we didn’t use complex param-
eters in equations. When we use complex parameters in equations, then the results, with the
exception of the phase shift, coincide with the signals obtained for output ports of symmetric
beam splitter with two inputs and two outputs, when coherent state is sent to the first splitter
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input, and a vacuum state – to the other. That allows us to use a Y-splitter for the implemen-
tation of a quantum random number generation system based on quantum vacuum fluctuations,
and to apply formulas previously-obtained for the calculations of systems consisting of a beam
splitter with two inputs and two outputs.
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1. Introduction

The possibility of lasing without inversion (LWI) was first postulated by Kocharovskaya
and Harris [1, 2]. In the latter of these works, the assumption of LWI viability had been based
on a comparison of the absorption and transmission coefficients of a three-level system, which
is excited according to V -scheme, whereas in previous works, it was shown that, for certain
parameter values for a system which is excited according to Λ-scheme, the laser generation
without inversion is possible. Furthermore, in our opinion, the work of Imamoglu and Harris [3],
must be highlighted. In this work, issued shortly after those two mentioned above, the opinion
was first expressed that LWI could be produced using the absorption that disappeared within one
of the Λ-scheme arms, whereas within another arm, excitation is performed by means of a strong
EM-field (phenomenon of electromagnetic induced transparency (EIT)) [4]. In the subsequent
works, the possibility for LWI, in principle, has been widely discussed (see, e.g. [4–9]).

However, Zibrov et al. [11] were the first to experimentally observe the LWI phenome-
non, where a set of four levels for the hyperfine atomic structure of 87Rb was considered: two
hyperfine levels for the ground 2S1/2 state, as well as two analogous levels for the first excited
2P1/2 state. The strong-coupled and weak probe fields were bound according to the V -scheme
one superfine level of the ground state with two superfine levels of the first exited state. In the
article, the frequency range at which the absorption coefficient becomes negative, i.e. lasing
generation occurs, was determined both theoretically (by means of numerical solution of the
Liouville equation for the density matrix) and experimentally.

Work [12] is similar to one just mentioned, with the difference being that LWI was
experimentally implemented using sodium atoms in the framework of the Λ-scheme, formed
by two hyperfine levels of the ground state 2S1/2 and level F = 1 of the first excited state
2P1/2 of this atom. In this work, the strong coupling field acts between the F = 2 levels of
the 2S1/2 state and the F = 1 level of the 2P1/2 state. This field, in combination with very
weak probe field, connecting levels of the hyperfine structure with F = 1 of the 2S1/2 and 2P1/2

states leads to the appearance of EIT resonance. Additionally, it was experimentally shown
that at a frequency close to where EIT occurs, amplification of the probe signal is observed.
Subsequently, the system has been positioned inside an annular resonator, and laser oscillation
was observed within the system, being provided by vacuum fluctuations.
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In this work, the possibility of laser generation without inversion (LWI) within a multi-
level system that is positioned inside a high-Q annular resonator will be considered. The subject
being dealt with here is closely allied with work [13], where are a non-inversion superreliance
impulse was observed for fine levels of the helium atom.

2. The statement of the problem

In this work, radiation emitted from 33S1 state (level “b”) of isotope 4He, whose coherent
excitation is performed according to the Λ-scheme from levels 23P2 and 23P1 (hereafter referred
to as, levels “a” and “c”) of this atom (see Fig. 1), will be considered. It should be noted that
the first of those two lower states could be referred to as metastable ones [16], and hereupon
a considerable population could be created at this level, for example, by means of an impact
from the ground state. In the framework of such an excitation, the fine bond is broken, and the
efficiency of population induction for the 23P state could be described as follows:

σj,m,;j′,m′ =
1

2j + 1
A(0)(j, j′, s) + α

∑
q

(−1)j
′+m′

[
j j′ 2

m −m′ q

]
D

(2)
0,q(θ)A

(2)(j, j′, l, s), (1)

where j and s depict total electron and spin moments, parameter α characterizes an anisotropy of
impact excitation. As an example, this value may be set as a ratio of induced orbital alignment
to a population [14]: α = T 2

0 /T
0
0 , and, finally, D(2)

m,m′(θ) – elements of three-dimensional

rotational matrix [15]. The quantities A(k) in this expression depend only on the kinematics of
momentum vectorial addition:

A(k)(j, j′, l, s) = (−1)j
′+s+k+l

√
(2j + 1)(2j′ + 1)

{
l l k

j j′ s

}
. (2)

FIG. 1. The excitation scheme

In this work, we will assume, that the Hamilton operator of the atomic system takes the
form:

Ĥ = Ĥ0 + V̂ , (3)

where H0 is the Hamiltonian operator of a free helium atom, while operator V̂ describes the
excitation process of level j = 1 (hereafter, of the level ”b”) of 33S1 state of the aforementioned
atom. In regard to the excitation process, we will assume that in both arms, ab and cb, excitation
is initiated by means of light polarized linearly along the OZ-axis laboratory frame of reference
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(this axis coincides with the direction of propagation for the exiting radiation), at frequencies
ω − δa/h̄ and ω + δc/h̄, respectively. The wave functions of all states have been constructed
according to general addition rules for angular momenta, whereas energy parameters of those
functions have been chosen according to the quantum defect method:

(Wab)MM1
=
∑
m,q

[
1 1 1

m M1 M

][
0 1 1

0 q m

]
(eab)q cos(ω + δa/h̄),

(Wcb)MM1
=
∑
m,q

[
1 1 2

m M1 M

][
0 1 1

0 q m

]
(ecb)q cos(ω + δc/h̄),

(4)

where eq is the path of the light polarization in some arm of the Λ-scheme.

Exciting electric field
−→
E (t) causes medium polarization that is characterized by the

polarization vector
−→
P , whose quantity is proportional to the density of the atoms n0 and mean

value of the dipole moment operator d̂, calculated with the density correlation matrix:
−→
P = −n0=

([
Sp
(
ρab
−→
d ab

)]
+
[
Sp
(
ρcb
−→
d cb

)])
. (5)

From the last expression, one can see that the medium polarization, as a result of
excitation, is defined by the density correlation matrix, and, therefore, depends on its variation.
In turn, the right side of Liouville equation that describes the density matrix evolution, depends
on Rabi frequency, which is proportional to the electric field value. Therefore, mutual variation
of the density matrix and of the induced electric field could be described by the following
system of self-consistent equations:

d

dt
ρ̃aa(t) =Γρ̃bb(t)−

i

h̄
(Vab(t)ρ̃ba(t)− ρ̃ab(t)Vba(t)) ,

d

dt
ρ̃bb(t) =− Γρ̃bb(t)−

i

h̄
(Vba(t)ρ̃ab(t)− ρ̃ba(t)Vab(t))−

i

h̄
(Vbc(t)ρ̃cb(t)− ρ̃bc(t)Vcb(t)) ,

d

dt
ρ̃cc(t) =Γρ̃bb(t)−

i

h̄
(Vcb(t)ρ̃bc(t)− ρ̃cb(t)Vbc(t)) ,

d

dt
ρ̃ab(t) =− Γ

2
ρ̃ab(t)−

i

h̄
(Ea − Eb)ρ̃ab(t)−

i

h̄
(Vab(t)ρ̃bb(t)− ρ̃aa(t)Vab(t)) ,

d

dt
ρ̃cb(t) =− Γ

2
ρ̃cb(t)−

i

h̄
(Ec − Eb)ρ̃cb(t)−

i

h̄
(Vcb(t)ρ̃bb(t)− ρ̃cc(t)Vcb(t)) ,

ρ̃ba(t) =ρ̃†ab(t); ρ̃bc(t) = ρ̃†cb(t),

∇2−→E− 1

c2

∂2

∂t2
−→
E =

4π

c2

∂2

∂t2
−→
P ,

(6)

where the matrix Γ describes the relaxation process, Ea and Ec are the energies for the lower
levels “a” and “c” respectively, Eb is the energy of the upper 33S1 state. Solution of such systems
is usually attempted using the rotating wave approximation, which means, that in system (6),
all terms that oscillate with the frequency ω of the exciting field should be neglected. The
higher order derivatives of slowly-varying summands should also be neglected. To separate
such terms in the system, it is convenient to introduce density matrices ρi,j(t) (i, j = a, b, c)
connected with previously used similar matrices, by means of the relations: ρii(t) = ρ̃ii(t)
(i = a, b, c), ρb,i(t) = ρ̃b,i(t) exp(−i(Eb − Ei)t), i = a, c, ρi,j(t) = ρj,i(t)

†. In regard to the
last equation, to separate rapidly oscillating summands, field strength and field polarization
vectors should be solved in the following manner: E = E(x, t)ei(ωt+kx) + E∗(x, t)e−i(ωt+kx) and
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P = P(x, t)ei(ωt+kx) + P∗(x, t)e−i(ωt+kx), where E(x, t) = <E(x, t) + i=E(x, t) and P(x, t) =
<P(x, t) + i=P(x, t). As a result of such substitutions, the last equation of system (6) will be
reduced to a pair of first-order equations that links the real and imaginary parts of field strength
and polarization vectors:

d

dt
(=E(x, t)) + c

d

dx
(=E(x, t)) =− 2πω<(P(x, t)),

d

dt
(<E(x, t)) + c

d

dx
(<E(x, t)) =2πω=(P(x, t)).

(7)

Hereafter, we will assume the polarization field to be independent from the spatial
coordinates. Next, we introduce the dimensionless Rabi frequency ΩR(t), which is linked to
the polarization vector by the relation ΩR(t) = E(t)τ0ea0/h̄, where τ0 = 36 · 10−9 s [16] is the
time of life of excited state 33S1, and introduce dimensionless time τ = t/τ0, and, additionally,
assuming that functions P and E vary slowly with time, and that the system is positioned
inside an annular resonator, such that one of the eigenfrequencies coincides with the transition
frequency between the “centers of gravity” for the upper and lower multiples, then, for system
(8), one can write:

d

dτ
ρaa(τ) =Γaρbb(τ) +

iΩR

2
[ρab(τ)Wba(τ)/za −Wab(τ)ρba(τ)za] ,

d

dτ
ρcc(τ) =Γcρbb(τ) +

iΩR

2
[ρcb(τ)Wbc(τ)zc −Wcb(τ)ρbc(τ)/zc] ,

d

dτ
ρbb(τ) =− Γρbb(τ)− iΩR

2

[
Wbaρab(τ)/za −

i

2h̄
ρba(τ)Wabza

]
−

iΩR

2

[
Wbcρcb(τ)zcc−

i

2h̄
ρbc(τ)Wcb/zc

]
,

d

dτ
ρab(τ) =− Γ

2
ρab(τ) +

iΩR

2

[
ρaa(τ)Wabza −

i

2h̄
Wabρbb(τ)za

]
+
iΩR

2
ρac(τ)Wcb/za,

d

dτ
ρcb(τ) =− Γ

2
ρcb(τ)− iΩR

2
[Wcbρbb(τ)/zc + ρcc(τ)Wcb/zc] +

iΩR

2
ρca (τ)Wabza,

d

dτ
ΩR =− Ω2

M i(Sp(ρabdz) + Sp(ρbcdz)),

ρba(t) =ρ†ab(t); ρbc(t) = ρ†cb(t),

(8)

where za = exp(iτ(
∆

2h̄
+ δa)) and zc = exp(iτ(

∆

2h̄
− δc)), and ΩM is the dimensionless

frequency of the field oscillation amplitude ΩM =

√
4πn0

(ea0

h̄

)2

h̄ω
〈r〉
a0

, which depends on

〈r〉 – dimensionless main value of operator r̂ for the 33S1 state. The substitution of values for
the fundamental constants in the last relation leads to the relation ΩM = 5.1610−4√n0 , where
n0 – density of the particulars.

3. The approximate solution of the Liouville equation

According to the fact, that the coupling field, which is acting in the “bc” arm of
Λ-scheme, is considered strong relative to the field acting in the “ba” arm, a solution for
system (9) could be found by means of perturbation theory, in the framework of initial conditions
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ρaa(0) = ρ(0)
aa , ρcc(0) = ρ(0)

cc and ρbb(0) = 0, where ρcc(0) and ρbb(0) are determined by relation
(1). Large values for the coupling field lead to the segmentation of them considered systems
splitting into blocks, the first of which associates the density correlation matrices ρab(t) and
ρac(t):

d

dt
ρab(t) =− γab

2
ρab(t) +

i

2
ρ(0)
aaWabe

it(δa+∆/2h̄) +
i

2
ρac(t)Wcbe

−it(−δc+∆/2h̄),

d

dt
ρac(t) =− γac

2
ρac(t) +

i

2
ρab(t)Wbce

it(−δc+∆/2h̄).

(9)

Now, it is pertinent to introduce matrix xac(t) and xab(t) according to expression:

ρac(t) = xac(t)e
−γact/2; ρab(t) = xab(t)e

−γabt/2, (10)

then, according to the second equation of system (9), for matrix xac(t) , one can obtain that:

d

dt
xac(t)Wcb =

1

2
i exp

(
i∆ + (γac − γab − 2iδc) h̄

2h̄
t

)
xab(t)WbcWcb. (11)

Then, having differentiated the first of equations (9) and substituting it into expres-
sion (11), the equation for the xac(t) matrix may be obtained:

d2

dt2
xab(t) +

(i∆) + (γac − γab − 2iδc) h̄

2h̄

d

dt
xab(t)+[

xab
WbcWcb

4
+

2∆ + [(−iγac + 2δa − 2δc) h̄]

4h̄
ρ(0)
aaWab

]
e

t
2

(γab+i[∆+2δa h̄]/h̄) = 0. (12)

Partial solution of this equation makes it possible to write a similar solution for ρab(t)
matrix:

ρab(t) = eit[∆+2δa h̄]/2h̄ (2∆ + (−iγac + 2δa − 2δc) h̄)

2h̄
ρ(0)
aaWabU, (13)

where U is a square matrix having the same order as the density matrix of the upper level
(ρbb(t), in the case under consideration), that contains Ib – the identity matrix of the same order
as ρbb(t):

U =

[
1

4
WbcWcb − Ib

(∆− iγabh̄+ 2δah̄) (2∆ + (−iγac + 2δa − 2δc)h̄)

4h̄2

]−1

. (14)

From expression (13), it is apparent that in the absence of relaxation processes, the
difference of the frequency mismatches in each arm of the Λ−scheme is equal to the lower
levels splitting of δc − δa = ∆, and the absorption of the probe field in the bc arm vanishing.
This effect is known as electromagnetically induced transparency (EIT).

Based on formula (13), the expression for density matrix that defines the “low-frequency
coherence” can be obtained:

ρac(t) =
1

4

(
−etγac/2 + eit[∆+(δa−δc)h̄]/h̄

)
ρ(0)
aaWabUWbc

(
1− eit[∆+(δa−δc)h̄]/h̄

)
, (15)

as well as elements of the density matrix ρbc(t), that determines coherence in bc arm:

ρbc(t) =

{
h̄

4

[(
e−γbct/2 − et(i∆+(γac+2iδa)h̄)/2h̄

)
∆ + (−iγac + iγbc + 2δa) h̄

+(
e−tγbc/2 − eit(∆−2δc h̄)/2h̄

)
4(∆− iγbch̄+ 2δch̄)

]
Wbaρ

(0)
aaWabUWbc

}
− i

2
eit(∆−2δc h̄)/2h̄Wbcρ

(0)
cc . (16)
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4. Discussion on the subject of numerical calculation results.

Before considering the items related to the solution of the system (9), some principal
problems connecting to the possibility of laser generation should be discussed.

First of all, it should be noted that, as numerical calculation has demonstrated, the
low-frequency coherence does not have a significant influence on the generation process. Much
more significant impediments to the generation process are resonance collisions of excited atoms
with atoms in ground state, that exhibit a destructive behavior, resulting in decay of generation.

From the theory of collisional depolarization [14], it is well-known that within the limits
of the impact-parameter method, the relaxation constant of collisional process of two heavy
particles, being described by the mutual interaction law W ∼ 1/Rn (here R is an internuclear
distance), is described by the relaxation constant:

γ = n0v

(
Q

h̄v

) 2
n−1

F (n), (17)

where n0 is a projectile density (the density of the of buffer gas particles), v – relative velocity
of colliding particles, while Q is a constant that depends on angular moments and interaction
low, F (n) is an expression that appears due to averaging of variation of the products of the
density matrix over the impact parameter. Concerning the Q quantity, it should be noted that
this value is equal to the Van der Waals constants difference in the case of interaction by law
W ∼ 1/R6, and to the quadrupole moment in the case of interaction by law W ∼ 1/R3. The
first of these laws is implemented at interaction of two different atoms, whereas the second
is utilized for the interaction of identical atoms. Owing to the fact that in coherent excitation
experiments, the hyperfine sublevels of the ground state are usually used as the lower levels,
then the influence of the collisions on those atoms is described by the law W ∼ 1/R3, whereas
influence of buffer gas on the excited state is described by law W ∼ 1/R6. It follows from what
was said, that the resonance collisions (collisions of two identical particles) leads to significant
broadening of the lower hyperfine levels, and even to their overlapping.

Within the work under consideration, when lower levels, having a fine structure for the
excited state with splitting of about 0.1 cm−1 are used [16], as a consequence, the influence
of collisions with particles of buffer gas is fairly insignificant. In support of this statement,
the following could be noted. On the one hand, for successful laser emission recording, it is
necessary to induce significant impact population of the 23P state of helium atoms ensemble.
Without going into technical difficulties, it should be noted that as soon as such an ensemble
has been created, atoms engaged in 23P state would interact with each other by law 1/R3, while
with atoms of buffer gas by law 1/R6. But it is clear that at given general density of helium
atoms, the density of impact-excited atoms would be significantly less than the density of non-
excited particles, and therefore 23P state of helium atom would be broadened to a significantly
weaker extent. It should be noted as well that, in the case under consideration, one of the lower
states 23P2 is metastable [16], whereas the influence of finiteness of the lifetime of the second
lower state 23P1 can be taken into account by means of introducing the appropriate relaxation
constants.

System (9) was integrated numerically, using method that has been described, in some
detail, in our previous work [17]. On the system integration, we assumed that, at the initial
point of time, the upper level is not populated ρi,b(0) = 0 (i = a, b, c), whereas a numerical
vales of the rest blocks of the density matrix are defined by formula (1). As for the fields
that are active in the arms of Λ-scheme, in each arm, they are equal to the vector sum of the
two fields: the stationary pumping field and the polarization one. With regard to the stationary
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pumping fields, we will assume that they are equal to zero at t ≤ 0, and reach their preset
values in a stepwise manner at t > 0. Additionally, we will assume that at the initial point of
time, the system undergoes a short “start-up” impulse, and later, at t > 0, the field active in the
system is defined by system (9). Numerical calculation results are represented in Figs. 2 – 6.

FIG. 2. The dependence of intensity of polarization field on dimensionless time.
Curves 1–3 coincide the mismatches in bc arm of Λ-scheme equal to δc = 0,
∆/2, ∆ whereas mismatch in ba arm is equal to zero

FIG. 3. The dependence of intensity of polarization field on the efficiency of
excitation. Curves 1–3 coincide to values of angle Θ = 0, π/4, π/2

In Fig. 2, the intensity of the polarization field for dimensionless time is represented
for several mismatched dimensionless laser frequency values in the bc arm: δc = 0,∆/2,∆ -
whereas in another arm, the mismatch is constant: δa = 0. To that end, relaxation constants in
the arms have been taken into account, according to the tabular values of transition probability
33S1 → 23P [16] , with weights proportional to multiplicity of the above-mentioned states.
It should be noted that the relaxation constants for the 23Pj states, both in this figure and



Laser generation without inversion on the fine levels of the helium atom 391

FIG. 4. The influence of relaxation on the generated field. Curve 1 is the curve 1
from the Fig. 1 (lower levels dose not relax); curve 2: each of levels “a” and “c”
relaxed with the relaxation constant equal to the half of the spectroscopic value;
curve 3: levels 23P2 did not relax and 23P1 relaxes with the constant equal to
the spectroscopic value; curve 4: both lower levels relaxes with the rate constant
equal to one-and-a-half time exceeding the spectroscopic value

FIG. 5. All of the three levels, 33S1, 22P1 and 22P2, are relaxing, with equally
large relaxation constants γ = 4, 6, 8 (curves 1–3 consequently)

in subsequent ones, were assumed to be zero. It is apparent from this figure that emission
represents a pulse train, with a magnitude that decreases as δc increases.

Figure 3 illustrates the dependance of the polarization field intensity on the efficiency of
the lower levels population, that is characterized by angle Θ (see formula (1)). The calculation
results show that the polarization field values are practically symmetrical with respect to the
angle value Θ = π/2. Therefore, this figure depicts the field-angle dependence, for Θ = 0,



392 A. G. Petrashen, N. V. Sytenko

π/4, π/2. It is apparent from the figure that for decreasing angle Θ within the preset limits, the
polarization field intensity also decreases.

Subsequent figures illustrate the influence of relaxation on the generated field. It is
worth noting that, in the case under consideration, the 22P state consists of two levels, 22P1

and 22P2, the latter of which is the metastable one.
In Fig. 4, four curves are presented that illustrate the dependance of the polarization field

intensity on dimensionless time. The first of these curves takes into account the radiative decay
of the upper level 33S1 on the lower levels 22P1 and 22P2, with the constants that correspond to
the spectroscopic values [16] (curve (1) from the previous figure). Curves 2 and 3, in addition
to the relaxation process of the upper state, take into account the radiative decay from the
lower states, and at that, when plotting curve 2, it has been assumed that each of 22P levels
decay at a rate equal to half that of the spectroscopic value, whereas curve 3 illustrates the case
when level 22P1 decays at a rate equal to the spectroscopic value, whereas the metastable level
does not relax. Curve 4 describes the case when both of 2P levels relax at a rate 1.5 times
that of the spectroscopic value. It is apparent from this figure that curves 2 and 3 practically
identical, while further increase of the relaxation rate results in a decrease in the polarization
field intensity.

In Fig. 5, the case was illustrated when all three levels, 33S1, 22P1 and 22P2, are
radiatively relaxing, with equally sized relaxation constants γ = 4, 6, 8. It is apparent from
the Fig. 4 that, for the last two relaxation constant values, emission consists practically of one
pulse, and this is in agreement with the results of previous work [13].

In the conclusion of this paragraph, we will provide some approximate formulas that
explain the appearance of the generated signal, and, particularly, the fact that the strongest
generation corresponds to the mismatch δc = 0, provided that in another arm of the Λ-scheme
there is no mismatch δa = 0 (see Fig. 2). To obtain these results, we used the software package
Mathematica, deriving density matrixes values ρaa(0), ρcc(0) (formula (1)), at the angle value
Θ = 0, and after that, correlation matrices elements ρab and ρcb were calculated analytically with
help of (13) and (16) formulas. Based on those matrices, spurs of matrices Sp(rabρaa(0)rabU),
Sp(rbaρaa(0)rabUrbcrcb) and Sp(ρcc(0)rcb), were calculated analytically, making it possible to
obtain the right side of equation defining the polarization field:

d

dt
Epol = kEpol Sp(ρbcrcb + ρbarba). (18)

Then, the variable x being imposed according to the relationship δc = x∆ and assuming
∆ to be large, in first order perturbation theory, the expression for the polarization field can be
obtained :

ln (Epol) ∼
(200− 7

√
70)e

1
2
it(1−2x)∆

4500(−1 + 2x)∆
. (19)

From this formula, it is apparent that the maximum of polarization field is achievable at
x = 0 i.e. δc = 0, which coincides with the data in Fig. 2.

5. Conclusion

In this work, the possibility of laser generation without inversion of the fine levels of
helium atom is considered. It should be mentioned that considerations of the problem in this
work and in articles quoted above [11, 12] differ in principle. In the first part of this article,
the positiveness of the reinforcement coefficient is achieved via radiation transitions from a
specially-populated additional level, whereas in the second part of the paper, generation occurs
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in that arm of the Λ-scheme where the absorption is absent, due to the system achieving an EIT
state.

A peculiar feature of this work consists in that for lower levels, used for the coherent
excitation according to Λ-scheme, the excited states 23P1 and 23P2 of the He atom were used.
The latter circumstances have permitted us to avoid significant broadening of the lower levels,
by means of their interaction with buffer gas. At the same time, the creation and maintenance
of a sufficient population at those levels is most probably caused by a strain to the system.
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