Characterization of the normal subgroups of finite index for the group representation of a Cayley tree
https://doi.org/10.17586/2220-8054-2016-7-5-888-892
Abstract
In this paper we give a characterization of normal subgroups for the group representation of the Cayley tree.
References
1. U.A. Rozikov. Gibbs measures on a Cayley trees, World Sci. Pub, Singapore, 2013.
2. Cohen D.E., Lyndon R.C. Free bases for normal subgroups of free groups, Trans. Amer. Math. Soc., 1963, 108, P. 526–537.
3. Ganikhodjaev N.N., Rozikov U.A. Description of periodic extreme Gibbs measures of some lattice model on the Cayley tree, Theor. Math. Phys., 1997, 111, P. 480–486.
4. G.I. Botirov. Functional equations for the Potts model with competing interactions on a Cayley tree. Nanosystems: physics, chemistry, mathematics, 2016, 7(3), P. 401–404.
5. Young J.W. On the partitions of a group and the resulting classification, Bull. Amer. Math. Soc., 1927, 33, P. 453–461.
6. U.A. Rozikov, F.H. Haydarov. Normal subgroups of finite index for the group represantation of the Cayley tree, TWMS Jour. Pure. Appl. Math., 2014, 5, P. 234–240.
7. Kurosh A.G. Group theory, Akademic Verlag, Berlin, 1953.
8. D.S. Malik, J.N. Mordeson, M.K. Sen. Fundamentals of Abstract Algebra, McGraw-Hill Com., 1997
Review
For citations:
Haydarov F.H. Characterization of the normal subgroups of finite index for the group representation of a Cayley tree. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(5):888-892. https://doi.org/10.17586/2220-8054-2016-7-5-888-892